[1] | Lay T, Hernlund J, and Buffett B A 2008 Nat. Geosci. 1 25 | Core–mantle boundary heat flow
[2] | Zhang C, Li F, Wei X, Guo M, Wei Y, Li L, Li X, and Zhou Q 2022 Chin. Phys. Lett. 39 096201 | Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO3
[3] | Murakami M, Hirose K, Kawamura K, Sata N, and Ohishi Y 2004 Science 304 855 | Post-Perovskite Phase Transition in MgSiO3
[4] | Stacey F D and Davis P M 2008 Physics of the Earth (Cambridge: Cambridge University Press) |
[5] | Goncharov A F, Haugen B D, Struzhkin V V, Beck P, and Jacobsen S D 2008 Nature 456 231 | Radiative conductivity in the Earth’s lower mantle
[6] | Osako M and Ito E 1991 Geophys. Res. Lett. 18 239 | Thermal diffusivity of MgSiO3 perovskite
[7] | Manthilake G M, de Koker N, Frost D J, and McCammon C A 2011 Proc. Natl. Acad. Sci. USA 108 17901 | Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core
[8] | Ohta K, Yagi T, Taketoshi N, Hirose K, Komabayashi T, Baba T, Ohishi Y, and Hernlund J 2012 Earth Planet. Sci. Lett. 349–350 109 | Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core–mantle boundary
[9] | Ohta K, Yagi T, and Hirose K 2014 Am. Mineral. 99 94 | Thermal diffusivities of MgSiO3 and Al-bearing MgSiO3 perovskites
[10] | Zhang Z and Wentzcovitch R M 2021 Phys. Rev. B 103 144103 | Ab initio lattice thermal conductivity of across the perovskite-postperovskite phase transition
[11] | Zhou Y, Dong Z Y, Hsieh W P, Goncharov A F, and Chen X J 2022 Nat. Rev. Phys. 4 319 | Thermal conductivity of materials under pressure
[12] | Wentzcovitch R M, Karki B B, Cococcioni M, and De Gironcoli S 2004 Phys. Rev. Lett. 92 018501 | Thermoelastic Properties of -Perovskite: Insights on the Nature of the Earth’s Lower Mantle
[13] | Haigis V, Salanne M, and Jahn S 2012 Earth Planet. Sci. Lett. 355–356 102 | Thermal conductivity of MgO, MgSiO3 perovskite and post-perovskite in the Earth's deep mantle
[14] | Dekura H, Tsuchiya T, Tsuchiya J et al. 2013 Phys. Rev. Lett. 110 025904 | Ab initio Lattice Thermal Conductivity of Perovskite as Found in Earth’s Lower Mantle
[15] | Tang X, Ntam M C, Dong J, Rainey E S, and Kavner A 2014 Geophys. Res. Lett. 41 2746 | The thermal conductivity of Earth's lower mantle
[16] | Ghaderi N, Zhang D B, Zhang H, Xian J, Wentzcovitch R M, and Sun T 2017 Sci. Rep. 7 5417 | Lattice Thermal Conductivity of MgSiO3 Perovskite from First Principles
[17] | Zhang D B, Allen P B, Sun T, and Wentzcovitch R M 2017 Phys. Rev. B 96 100302 | Thermal conductivity from phonon quasiparticles with subminimal mean free path in the perovskite
[18] | Luo Y, Yang X, Feng T, Wang J, and Ruan X 2020 Nat. Commun. 11 2554 | Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals
[19] | Mukhopadhyay S, Parker D S, Sales B C, Puretzky A A, Mcguire M A, and Lindsay L 2018 Science 360 1455 | Two-channel model for ultralow thermal conductivity of crystalline Tl3 VSe4
[20] | Ioffe A F and Regel A R 1960 Prog. Semicond. 4 237 |
[21] | Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, and Yang N 2021 Chin. Phys. Lett. 38 014401 | How Does van der Waals Confinement Enhance Phonon Transport?
[22] | Zhang E, Yao Y, Gao T, Kang D, Wu J, and Dai J 2019 J. Chem. Phys. 151 064116 | The effect of external temperature gradients on thermal conductivity in non-equilibrium molecular dynamics simulations: From nanowires to bulk Si
[23] | Ohnishi M, Tadano T, Tsuneyuki S, and Shiomi J 2022 Phys. Rev. B 106 024303 | Anharmonic phonon renormalization and thermal transport in the type-I clathrate from first principles
[24] | Stackhouse S, Stixrude L, and Karki B B 2015 Earth Planet. Sci. Lett. 427 11 | First-principles calculations of the lattice thermal conductivity of the lower mantle
[25] | Zhang L, Han J, Wang H, Car R, and Weinan EJPRL 2018 Phys. Rev. Lett. 120 143001 | Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
[26] | Ouyang Y, Zhang Z, Yu C, He J, Yan G, and Chen J 2020 Chin. Phys. Lett. 37 126301 | Accuracy of Machine Learning Potential for Predictions of Multiple-Target Physical Properties
[27] | Zeng Q, Chen B, Yu X, Zhang S, Kang D, Wang H, and Dai J 2022 Phys. Rev. B 105 174109 | Towards large-scale and spatiotemporally resolved diagnosis of electronic density of states by deep learning
[28] | Deng J and Stixrude L 2021 Geophys. Res. Lett. 48 e2021GL093806 |
[29] | Zeng Q, Yu X, Yao Y, Gao T, Chen B, Zhang S, Kang D, Wang H, and Dai J 2021 Phys. Rev. Res. 3 033116 | Ab initio validation on the connection between atomistic and hydrodynamic description to unravel the ion dynamics of warm dense matter
[30] | Giannozzi P, Andreussi O, Brumme T et al. 2017 J. Phys.: Condens. Matter 29 465901 | Advanced capabilities for materials modelling with Quantum ESPRESSO
[31] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[32] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[33] | Holzwarth N A W, Tackett A R, and Matthews G E 2001 Comput. Phys. Commun. 135 329 | A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions
[34] | Wang H, Zhang L, Han J, and Weinan E 2018 Comput. Phys. Commun. 228 178 | DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
[35] | Zhang Y, Wang H, Chen W, Zeng J, Zhang L, Wang H, and Weinan E 2020 Comput. Phys. Commun. 253 107206 | DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models
[36] | Plimpton S 1995 J. Comput. Phys. 117 1 | Fast Parallel Algorithms for Short-Range Molecular Dynamics
[37] | Nosé S 1984 J. Chem. Phys. 81 511 | A unified formulation of the constant temperature molecular dynamics methods
[38] | Hoover W G 1985 Phys. Rev. A 31 1695 | Canonical dynamics: Equilibrium phase-space distributions
[39] | Tian H W, Shen H Y, Zhang X G, Li X, Jiang W X, and Cui T J 2020 Front. Phys. 8 584077 | Terahertz Metasurfaces: Toward Multifunctional and Programmable Wave Manipulation
[40] | Tadano T, Gohda Y, and Tsuneyuki S 2014 J. Phys.: Condens. Matter 26 225402 | Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations
[41] | Tadano T and Tsuneyuki S 2015 Phys. Rev. B 92 054301 | Self-consistent phonon calculations of lattice dynamical properties in cubic with first-principles anharmonic force constants
[42] | Green M S 1954 J. Chem. Phys. 22 398 | Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids
[43] | Kubo R 1957 J. Phys. Soc. Jpn. 12 570 | Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems
[44] | Stixrude L and Cohen R 1993 Nature 364 613 | Stability of orthorhombic MgSiO3 perovskite in the Earth's lower mantle
[45] | Kudoh Y, Ito E, and Takeda H 1987 Phys. Chem. Miner. 14 350 | Effect of pressure on the crystal structure of perovskite-type MgSiO3
[46] | Fiquet G, Dewaele A, Andrault D, Kunz M, and Bihan T L 2000 Geophys. Res. Lett. 27 21 | Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions
[47] | Utsumi W, Funamori N, Yagi T, Ito E, Kikegawa T, and Shimomura O 1995 Geophys. Res. Lett. 22 1005 | Thermal expansivity of MgSiO3 perovskite under high pressures up to 20 GPa
[48] | Funamori N, Yagi T, Utsumi W, Kondo T, Uchida T, and Funamori M 1996 J. Geophys. Res.: Solid Earth 101 8257 | Thermoelastic properties of MgSiO3 perovskite determined by in situ X ray observations up to 30 GPa and 2000 K
[49] | Fiquet G, Andrault D, Dewaele A, Charpin T, Kunz M, and Haüsermann D 1998 Phys. Earth Planet. Inter. 105 21 | P-V-T equation of state of MgSiO3 perovskite
[50] | Saxena S K, Dubrovinsky L S, Tutti F, and Bihan T L 1999 Am. Mineral. 84 226 | Equation of state of MgSiO3 with the perovskite structure based on experimental measurement
[51] | Guignot N, Andrault D, Morard G, Bolfan N, and Mezouar M 2007 Earth Planet. Sci. Lett. 256 162 | Thermoelastic properties of post-perovskite phase MgSiO3 determined experimentally at core–mantle boundary P–T conditions
[52] | Jahn S and Madden P A 2007 Phys. Earth Planet. Inter. 162 129 | Modeling Earth materials from crustal to lower mantle conditions: A transferable set of interaction potentials for the CMAS system
[53] | Dekura H and Tsuchiya T 2019 Geophys. Res. Lett. 46 12919 | Lattice Thermal Conductivity of MgSiO3 Postperovskite Under the Lowermost Mantle Conditions From Ab Initio Anharmonic Lattice Dynamics
[54] | Qiu R, Yu X, Wang D, Zhang S, Kang D, and Dai J 2021 ACS Appl. Nano Mater. 4 10665 | Nanoscale Topological Morphology Transition and Controllable Thermal Conductivity of Wrinkled Hexagonal Boron Nitride: Implications for Thermal Manipulation and Management
[55] | Dalton D A, Hsieh W P, Hohensee G T, Cahill D G, and Goncharov A F 2013 Sci. Rep. 3 2400 | Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure
[56] | Lindsay L, Broido D A, Carrete J, Mingo N, and Reinecke T L 2015 Phys. Rev. B 91 121202 | Anomalous pressure dependence of thermal conductivities of large mass ratio compounds
[57] | Zhang Z, Zhang D B, Onga K, Hasegawa A, Ohta K, Hirose K, and Wentzcovitch R M 2021 Phys. Rev. B 104 184101 | Thermal conductivity of perovskite at lower mantle conditions
[58] | Belonoshko A B, Skorodumova N V, Rosengren A, Ahuja R, Johansson B, Burakovsky L, and Preston D L 2005 Phys. Rev. Lett. 94 195701 | High-Pressure Melting of
[59] | Oganov A R and Ono S 2004 Nature 430 445 | Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer
[60] | Tosi N, Yuen D A, De Koker N, and Wentzcovitch R M 2013 Phys. Earth Planet. Inter. 217 48 | Mantle dynamics with pressure- and temperature-dependent thermal expansivity and conductivity
[61] | Naliboff J B and Kellogg L H 2006 Geophys. Res. Lett. 33 L12S09 | Dynamic effects of a step-wise increase in thermal conductivity and viscosity in the lowermost mantle
[62] | Tosi N, Yuen D A, and Adek O 2010 Earth Planet. Sci. Lett. 298 229 | Dynamical consequences in the lower mantle with the post-perovskite phase change and strongly depth-dependent thermodynamic and transport properties
[63] | Turcotte D L and Schubert G 2002 Geodynamics 2nd edn (Cambridge: Cambridge University Press) |