[1] | Mohanty D et al 2016 Appl. Phys. Lett. 109 143109 | van der Waals epitaxy of CdTe thin film on graphene
[2] | Tang K et al 2016 J. Alloys Compd. 685 370 | Molecular beam epitaxial growth and optical properties of the CdTe thin films on highly mismatched SrTiO 3 substrates
[3] | Loferski J J 1956 J. Appl. Phys. 27 777 | Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion
[4] | Major J D 2016 Semicond. Sci. Technol. 31 093001 | Grain boundaries in CdTe thin film solar cells: a review
[5] | Yang J H et al 2016 Semicond. Sci. Technol. 31 083002 | Review on first-principles study of defect properties of CdTe as a solar cell absorber
[6] | Pandey S et al 2005 Thin Solid Films 473 54 | Growth of cubic and hexagonal CdTe thin films by pulsed laser deposition
[7] | Sathyamoorthy R et al 2003 Sol. Energy Mater. Sol. Cells 76 339 | Effect of substrate temperature on the structure and optical properties of CdTe thin film
[8] | Bernevig B A et al 2006 Science 314 1757 | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells
[9] | Konig M et al 2007 Science 318 766 | Quantum Spin Hall Insulator State in HgTe Quantum Wells
[10] | Qi X L and Zhang S C 2010 Phys. Today 63 33 | The quantum spin Hall effect and topological insulators
[11] | Sporken R et al 1992 J. Vac. Sci. Technol. B 10 1405 | Current status of direct growth of CdTe and HgCdTe on silicon by molecular-beam epitaxy
[12] | Sporken R et al 1989 Appl. Phys. Lett. 55 1879 | Molecular beam epitaxial growth of CdTe and HgCdTe on Si (100)
[13] | Matsumura N et al 1985 J. Cryst. Growth 71 361 | Preparation of CdTe thin films on Ge substrates by molecular beam epitaxy
[14] | Zanatta J et al 1998 J. Cryst. Growth 184 1297 |
[15] | Farrow R et al 1981 Appl. Phys. Lett. 39 954 | Molecular beam epitaxial growth of high structural perfection, heteroepitaxial CdTe films on InSb (001)
[16] | Wood S et al 1984 J. Appl. Phys. 55 4225 | Microstructural studies of CdTe and InSb films grown by molecular beam epitaxy
[17] | Ballingall J et al 1985 Appl. Phys. Lett. 47 599 | Low defect density CdTe(111)‐GaAs(001) heterostructures by molecular beam epitaxy
[18] | Bicknell R et al 1984 Appl. Phys. Lett. 44 313 | Growth of (100)CdTe films of high structural perfection on (100)GaAs substrates by molecular beam epitaxy
[19] | Faurie J et al 1986 Surf. Sci. 168 473 | CdTe-GaAs(100) interface: MBE growth, rheed and XPS characterization
[20] | Feldman R et al 1986 Appl. Phys. Lett. 48 248 | Influence of Ga‐As‐Te interfacial phases on the orientation of epitaxial CdTe on GaAs
[21] | Kolodziejski L et al 1986 J. Vac. Sci. Technol. A 4 2150 | Epitaxial growth of CdTe on GaAs by molecular beam epitaxy
[22] | Leopold D et al 1986 Appl. Phys. Lett. 49 1473 | Photoluminescence in CdTe grown on GaAs substrates by molecular beam epitaxy
[23] | Otsuka N et al 1985 Appl. Phys. Lett. 46 860 | High resolution electron microscope study of epitaxial CdTe‐GaAs interfaces
[24] | Ponce F, Anderson G and Ballingall J 1986 Surf. Sci. 168 564 | Interface structure in heteroepitaxial CdTe on GaAs(100)
[25] | Srinivasa R, Panish M and Temkin H 1987 Appl. Phys. Lett. 50 1441 | Control of orientation of CdTe grown on clean GaAs and the reconstruction of the precursor surfaces
[26] | Cole H, Woodbury H and Schetzina J 1984 J. Appl. Phys. 55 3166 | High quality epitaxial films of CdTe on sapphire
[27] | Myers T, Giles T N, Yanka R, Bicknell R, Cook J J, Schetzina J, Jost S, Cole H and Woodbury H 1985 J. Vac. Sci. Technol. A 3 71 | Properties and applications of CdTe/sapphire epilayers grown by molecular beam epitaxy
[28] | Biegelsen D, Bringans R, Northrup J and Swartz L E 1990 Phys. Rev. B 41 5701 | Surface reconstructions of GaAs(100) observed by scanning tunneling microscopy
[29] | Chadi D 1987 J. Vac. Sci. Technol. A 5 834 | Atomic structure of GaAs(100)‐(2×1) and (2×4) reconstructed surfaces
[30] | Lu Z, Lagarde C, Sacher E, Currie J and Yelon A 1989 J. Vac. Sci. Technol. A 7 646 | A surface analytical study of GaAs(100) cleaning procedures
[31] | Qian G X, Martin R M and Chadi D 1988 Phys. Rev. B 38 7649 | First-principles study of the atomic reconstructions and energies of Ga- and As-stabilized GaAs(100) surfaces
[32] | Vasquez R, Lewis B and Grunthaner F 1983 Appl. Phys. Lett. 42 293 | X‐ray photoelectron spectroscopic study of the oxide removal mechanism of GaAs (100) molecular beam epitaxial substrates in i n s i t u heating
[33] | Cho A 1976 J. Appl. Phys. 47 2841 | Bonding direction and surface‐structure orientation on GaAs (001)
[34] | Kou X F, Lang M R, Fan Y B, Jiang Y, Nie T X, Zhang J M, Jiang W J, Wang Y, Yao Y G, He L and Wang K L 2013 ACS Nano 7 9205 | Interplay between Different Magnetisms in Cr-Doped Topological Insulators
[35] | He L, Kou X F and Wang K L 2013 Phys. Status Solidi-R 7 50 | Review of 3D topological insulator thin-film growth by molecular beam epitaxy and potential applications
[36] | Leo G, Longo M, Lovergine N, Mancini A, Vasanelli L, Drigo A, Romanato F, Peluso T and Tapfer L 1996 J. Vac. Sci. Technol. B 14 1739 | Influence of a ZnTe buffer layer on the structural quality of CdTe epilayers grown on (100)GaAs by metalorganic vapor phase epitaxy
[37] | Shtrikman H, Oron M, Raizman A and Cinader G 1988 J. Electron. Mater. 17 105 | Determining the [001] crystal orientation of CdTe layers grown on (001) GaAs