[1] | Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510 | Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
[2] | Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465 | Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency
[3] | Sun K, Yan C, Liu F, Huang J, Zhou F, Stride J A, Green M and Hao X 2016 Adv. Energy Mater. 6 1600046-n/a | Over 9% Efficient Kesterite Cu 2 ZnSnS 4 Solar Cell Fabricated by Using Zn 1- x Cd x S Buffer Layer
[4] | Scragg J J S, Choubrac L, Lafond A, Ericson T and Platzer-Björkman C 2014 Appl. Phys. Lett. 104 041911 | A low-temperature order-disorder transition in Cu 2 ZnSnS 4 thin films
[5] | Altamura G, Wang M and Choy K L 2016 Sci. Rep. 6 22109 | Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells
[6] | Pianezzi F, Reinhard P, Chirila A, Bissig B, Nishiwaki S, Buecheler S and Tiwari A N 2014 Phys. Chem. Chem. Phys. 16 8843 | Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells
[7] | Han M, Zhang X and Zeng Z 2017 Phys. Chem. Chem. Phys. 19 17799 | An investigation of Na-related defects in Cu 2 ZnSnSe 4
[8] | Su Z, Tan J M R, Li X, Zeng X, Batabyal S K and Wong L H 2015 Adv. Energy Mater. 5 1500682 | Cation Substitution of Solution-Processed Cu 2 ZnSnS 4 Thin Film Solar Cell with over 9% Efficiency
[9] | Khadka D B, Kim S and Kim J 2016 J. Phys. Chem. C 120 4251 | Effects of Ge Alloying on Device Characteristics of Kesterite-Based CZTSSe Thin Film Solar Cells
[10] | Yang Y, Kang X, Huang L, Wei S and Pan D 2015 J. Phys. Chem. C 119 22797 | Facile and Low-Cost Sodium-Doping Method for High-Efficiency Cu 2 ZnSnSe 4 Thin Film Solar Cells
[11] | H L A I N G Oo W M, Johnson J L, Bhatia A, Lund E A, Nowell M M and Scarpulla M A 2011 J. Electron. Mater. 40 2214 | Grain Size and Texture of Cu2ZnSnS4 Thin Films Synthesized by Cosputtering Binary Sulfides and Annealing: Effects of Processing Conditions and Sodium
[12] | Ananthoju B, Mohapatra J, Jangid M K, Bahadur D, Medhekar N V and Aslam M 2016 Sci. Rep. 6 35369 | Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance
[13] | Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R and Gershon T S 2016 J. Chem. Phys. 144 104704 | Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics
[14] | Guchhait A, Su Z, Tay Y F, Shukla S, Li W, Leow S W, Tan J M R, Lie S, Gunawan O and Wong L H 2016 ACS Energy Lett. 1 1256 | Enhancement of Open-Circuit Voltage of Solution-Processed Cu 2 ZnSnS 4 Solar Cells with 7.2% Efficiency by Incorporation of Silver
[15] | Lafond A, Guillot-Deudon C, Vidal J, Paris M, La C and Jobic S 2017 Inorg. Chem. 56 2712 | Substitution of Li for Cu in Cu 2 ZnSnS 4 : Toward Wide Band Gap Absorbers with Low Cation Disorder for Thin Film Solar Cells
[16] | Ford G M, Guo Q, Agrawal R and Hillhouse H W 2011 Chem. Mater. 23 2626 | Earth Abundant Element Cu 2 Zn(Sn 1− x Ge x )S 4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication
[17] | Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[18] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[19] | Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 | Hybrid functionals based on a screened Coulomb potential
[20] | Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748 | "Special points for Brillouin-zone integrations"—a reply
[21] | Chen S, Gong X G, Walsh A and Wei S H 2009 Phys. Rev. B 79 165211 | Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and compounds
[22] | Chen S, Walsh A, Luo Y, Yang J H , Gong X G and Wei S H 2010 Phys. Rev. B 82 195203 | Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors
[23] | Zhong G, Tse K, Zhang Y, Li X, Huang L, Yang C, Zhu J, Zeng Z, Zhang Z and Xiao X 2016 Thin Solid Films 603 224 | Induced effects by the substitution of Zn in Cu 2 ZnSn X 4 ( X = S and Se)
[24] | Yuan Z G, Cheng S Y, Xiang H J, Gong X G, Walsh A, Park J S, Repins I and Wei S H 2015 Adv. Funct. Mater. 25 6733 | Engineering Solar Cell Absorbers by Exploring the Band Alignment and Defect Disparity: The Case of Cu- and Ag-Based Kesterite Compounds
[25] | Peng H and Lany S 2013 Phys. Rev. B 87 174113 | Polymorphic energy ordering of MgO, ZnO, GaN, and MnO within the random phase approximation
[26] | Bai Y, Zhang Q, Luo G, Bu Y, Zhu L, Fan L and Wang B 2017 Phys. Chem. Chem. Phys. 19 15394 | GaS 0.5 Te 0.5 monolayer as an efficient water splitting photocatalyst
[27] | Xiao W, Wang J N, Zhao X S, Wang J W, Huang G J, Cheng L, Jiang L J and Wang L G 2015 Sol. Energy 116 125 | Intrinsic defects and Na doping in Cu2ZnSnS4: A density-functional theory study
[28] | Elaheh G, Hossein M, Janos K and Claudia F 2015 J. Phys. D 48 482001 | Incorporation of Li dopant into Cu 2 ZnSnSe 4 photovoltaic absorber: hybrid-functional calculations
[29] | Kumar M, Zhao H and Persson C 2013 Thin Solid Films 535 318 | Cation vacancies in the alloy compounds of Cu2ZnSn(S1−xSex)4 and CuIn(S1−xSex)2
[30] | Wang W, Shen H L, Jin J L, Li J Z and Ma Y 2015 Chin. Phys. B 24 056805 | Effect of thermal pretreatment of metal precursor on the properties of Cu 2 ZnSnS 4 films
[31] | Zhao Z and Zhao X 2015 J. Semicond. 36 083004 | Electronic, optical, and mechanical properties of Cu 2 ZnSnS 4 with four crystal structures
[32] | Qi Y F, Kou D X, Zhou W H, Zhou Z J, Tian Q W, Meng Y N, Liu X S, Du Z L and Wu S X 2017 Energy Environ. Sci. 10 2401 | Engineering of interface band bending and defects elimination via a Ag-graded active layer for efficient (Cu,Ag) 2 ZnSn(S,Se) 4 solar cells