[1] | Gerhardts R R, Weiss D and Klitzing K v 1989 Phys. Rev. Lett. 62 1173 | Novel magnetoresistance oscillations in a periodically modulated two-dimensional electron gas
[2] | Winkler R W, Kotthaus J P and Ploog K 1989 Phys. Rev. Lett. 62 1177 | Landau band conductivity in a two-dimensional electron system modulated by an artificial one-dimensional superlattice potential
[3] | Weiss D, Roukes M L, Menschig A et al 1991 Phys. Rev. Lett. 66 2790 | Electron pinball and commensurate orbits in a periodic array of scatterers
[4] | Ensslin K and Petroff P M 1990 Phys. Rev. B 41 12307 | Magnetotransport through an antidot lattice in GaAs- As heterostructures
[5] | Albrecht C, Smet J H, Weiss D et al 1999 Phys. Rev. Lett. 83 2234 | Fermiology of Two-Dimensional Lateral Superlattices
[6] | Schuster R, Ensslin K, Kotthaus J P, Holl M and Stanley C 1993 Phys. Rev. B 47 6843 | Selective probing of ballistic electron orbits in rectangular antidot lattices
[7] | Rychen J, Van$\check{c}$ura T, Heinzel T et al 1998 Phys. Rev. B 58 3568 | Commensurability oscillations of rectangular antidot arrays: A classical diffusion model
[8] | Yamashiro T, Takahara J, Takagaki Y et al 1991 Solid State Commun. 79 885 | Commensurate classical orbits on triangular lattices of anti-dots
[9] | Meckler S, Heinzel T, Cavanna A et al 2005 Phys. Rev. B 72 035319 | Commensurability effects in hexagonal antidot lattices with large antidot diameters
[10] | Yuan Z Q, Yang C L, Du R R et al 2006 Phys. Rev. B 74 075313 | Microwave photoresistance of a high-mobility two-dimensional electron gas in a triangular antidot lattice
[11] | Kato Y, Endo A, Katsumoto S and Iye Y 2012 Phys. Rev. B 86 235315 | Geometric resonances in the magnetoresistance of hexagonal lateral superlattices
[12] | Schuster R, Ernst G, Ensslin K et al 1994 Phys. Rev. B 50 8090 | Experimental characterization of electron trajectories in antidot lattices
[13] | Baskin E M, Gusev G M, Kvon Z D et al 1992 JETP Lett. 55 678 |
[14] | Tsukagoshi K, Haraguchi M, Takaoka S and Murase K 1996 J. Phys. Soc. Jpn. 65 811 | On the Mechanism of Commensurability Oscillations in Anisotropic Antidot Lattices
[15] | Weiss D, Richter K, Menschig A et al 1993 Phys. Rev. Lett. 70 4118 | Quantized periodic orbits in large antidot arrays
[16] | Nihey F, Hwang S W and Nakamura K 1995 Phys. Rev. B 51 4649 | Observation of large h /2 e oscillations in semiconductor antidot lattices
[17] | Iye Y, Ueki M, Endo A and Katsumoto S 2004 J. Phys. Soc. Jpn. 73 3370 | Aharonov鈥揃ohm-type Effects in Triangular Antidot Lattice
[18] | Ueki M, Endo A, Katsumoto S and Iye Y 2004 Physica E 22 365 | Quantum oscillation and decoherence in triangular antidot lattice
[19] | Kato M, Tanaka H, Endo A et al 2006 Physica E 34 534 | Aharonov鈥揃ohm-type effects in different arrays of antidots
[20] | Deutschmann R A, Wegscheider W, Rother M et al 2001 Phys. Rev. Lett. 86 1857 | Quantum Interference in Artificial Band Structures
[21] | Geisler M C, Smet J H, Umansky V et al 2004 Phys. Rev. Lett. 92 256801 | Detection of a Landau Band-Coupling-Induced Rearrangement of the Hofstadter Butterfly
[22] | Polini M, Guinea F, Lewenstein M et al 2013 Nat. Nanotechnol. 8 625 | Artificial honeycomb lattices for electrons, atoms and photons
[23] | Park C H and Steven G L 2009 Nano Lett. 9 1793 | Making Massless Dirac Fermions from a Patterned Two-Dimensional Electron Gas
[24] | Gibertini M, Singha A, Pellegrini V et al 2009 Phys. Rev. B 79 241406 | Engineering artificial graphene in a two-dimensional electron gas
[25] | Stormer H L, Baldwin K W, Pfeiffer L N and West K W 1992 Solid State Commun. 84 95 | Strikingly linear magnetic field dependence of the magnetoresistivity in high quality two-dimensional electron systems
[26] | Pan W, Xia J S, Stormer H L et al 2005 Phys. Rev. Lett. 95 066808 | Quantization of the Diagonal Resistance: Density Gradients and the Empirical Resistance Rule in a 2D System
[27] | Tsukagoshi K, Nagao T, Haraguchi M et al 1996 J. Phys. Soc. Jpn. 65 1914 | Investigation of Hall Resistivity in Antidot Lattices with respect to Commensurability Oscillations
[28] | Fleischmann R, Geisel T and Ketzmerick R 1992 Phys. Rev. Lett. 68 1367 | Magnetoresistance due to chaos and nonlinear resonances in lateral surface superlattices
[29] | Roukes M L, Scherer A, Allen S J et al 1987 Phys. Rev. Lett. 59 3011 | Quenching of the Hall Effect in a One-Dimensional Wire
[30] | Ford C J B, Thornton T J, Newbury R et al 1988 Phys. Rev. B 38 8518 | Vanishing hall voltage in a quasi-one-dimensional heterojunction
[31] | Beenakker C W J and Houten H v 1988 Phys. Rev. Lett. 60 2406 | Quenching of the Hall Effect
[32] | Beenakker C W J and Houten H v 1989 Phys. Rev. Lett. 63 1857 | Billiard model of a ballistic multiprobe conductor
[33] | Baranger H U and Stone A D 1989 Phys. Rev. Lett. 63 414 | Quenching of the Hall resistance in ballistic microstructures: A collimation effect
[34] | Akera H and Ando T 1990 Phys. Rev. B 41 11967 | Theory of the Hall effect in quantum wires: Effects of scattering