[1] | Maruyama K, Nori F and Vedral V 2009 Rev. Mod. Phys. 81 1 | Colloquium : The physics of Maxwell’s demon and information
[2] | Landauer R 1961 IBM J. Res. Dev. 5 183 | Irreversibility and Heat Generation in the Computing Process
[3] | Bennett C 1982 Int. J. Theor. Phys. 21 905 | The thermodynamics of computation—a review
[4] | Zurek W H 1984 Nato Sci. Ser. B 135 151 (ed Moore G T and Scully M O, Plenum Press) |
[5] | Zurek W H 1989 Nature 341 119 | Thermodynamic cost of computation, algorithmic complexity and the information metric
[6] | Lloyd S 1997 Phys. Rev. A 56 3374 | Quantum-mechanical Maxwell’s demon
[7] | Vedral V 2000 Proc. R. Soc. London Ser. A 456 969 | Landauer's erasure, error correction and entanglement
[8] | Kim S, Sagawa T, De Liberato S and Ueda M 2011 Phys. Rev. Lett. 106 70401 | Quantum Szilard Engine
[9] | Scully M O, Zubairy M S, Agarwal G S and Walther H 2003 Science 299 862 | Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence
[10] | Serreli V, Lee C F, Kay E R and Leigh D A 2007 Nature 445 523 | A molecular information ratchet
[11] | Raizen M G 2009 Science 324 1403 | Comprehensive Control of Atomic Motion
[12] | Toyabe S, Sagawa T, Ueda M, Muneyuki E and Sano M 2010 Nat. Phys. 6 988 | Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality
[13] | Berut A, Arakelyan A, Petrosyan A et al 2012 Nature 483 187 | Experimental verification of Landauer’s principle linking information and thermodynamics
[14] | Koski J V, Maisi V F, Sagawa T and Pekola J P 2014 Phys. Rev. Lett. 113 30601 | Experimental Observation of the Role of Mutual Information in the Nonequilibrium Dynamics of a Maxwell Demon
[15] | Koski J V, Maisi V F, Pekola J P and Averin D V 2014 Proc. Natl. Acad. Sci. USA 111 13786 | Experimental realization of a Szilard engine with a single electron
[16] | Koski J V, Kutvonen A, Khaymovich I M, Ala-Nissila T 2015 Phys. Rev. Lett. 115 260602 | On-Chip Maxwell’s Demon as an Information-Powered Refrigerator
[17] | Vidrighin M D, Dahlsten O, Barbieri M et al 2016 Phys. Rev. Lett. 116 050401 | Photonic Maxwell’s Demon
[18] | Elouard C, Herrera-Marti D, Huard B and Auffeves A 2017 Phys. Rev. Lett. 118 260603 | Extracting Work from Quantum Measurement in Maxwell’s Demon Engines
[19] | Kieu T D 2004 Phys. Rev. Lett. 93 140403 | The Second Law, Maxwell's Demon, and Work Derivable from Quantum Heat Engines
[20] | Quan H, Wang Y, Liu Y, Sun C and Nori F 2006 Phys. Rev. Lett. 97 180402 | Maxwell’s Demon Assisted Thermodynamic Cycle in Superconducting Quantum Circuits
[21] | Rio L D, Renner R, Aaberg J, Dahlsten O and Vedral V 2011 Nature 474 61 | The thermodynamic meaning of negative entropy
[22] | Masanes L and Oppenheim J A 2017 Nat. Commun. 8 14538 | A general derivation and quantification of the third law of thermodynamics
[23] | Camati P A, Peterson J P, Batalhao T B et al 2016 Phys. Rev. Lett. 117 240502 | Experimental Rectification of Entropy Production by Maxwell’s Demon in a Quantum System
[24] | Cottet N, Jezouin S, Bretheau L et al 2017 Proc. Natl. Acad. Sci. USA 114 7561 | Experimental observation of the role of mutual information in the nonequilibrium dynamics of a Maxwell demon
[25] | Doherty M W, Manson N B, Delaney P et al 2013 Phys. Rep. 528 1 | The nitrogen-vacancy colour centre in diamond
[26] | Childress L, Walsworth R and M Lukin 2014 Phys. Today 67 38 | Atom-like crystal defects: From quantum computers to biological sensors
[27] | Jelezko F, Gaebel T, Popa I, Gruber A and Wrachtrup J 2004 Phys. Rev. Lett. 92 076401 | Observation of Coherent Oscillations in a Single Electron Spin
[28] | Neumann P, Mizuochi N, Rempp F et al 2008 Science 320 1326 | Multipartite Entanglement Among Single Spins in Diamond
[29] | Jacques V, Neumann P, Beck J et al 2009 Phys. Rev. Lett. 102 057403 | Dynamic Polarization of Single Nuclear Spins by Optical Pumping of Nitrogen-Vacancy Color Centers in Diamond at Room Temperature
[30] | Yao N Y, Jiang L, Gorshkov A V et al 2012 Nat. Commun. 3 800 | Scalable architecture for a room temperature solid-state quantum information processor
[31] | Van d S T, Wang Z H, Blok M S et al 2012 Nature 484 82 | Decoherence-protected quantum gates for a hybrid solid-state spin register
[32] | Maurer P C and Lukin M D 2012 Science 336 1283 | Room-Temperature Quantum Bit Memory Exceeding One Second
[33] | Zu C, Wang W B, He L et al 2014 Nature 514 72 | Experimental realization of universal geometric quantum gates with solid-state spins
[34] | Pfaff W, Hensen B J, Bernien H et al 2014 Science 345 532 | Unconditional quantum teleportation between distant solid-state quantum bits
[35] | Zhao N, Ho S W and Liu R B 2012 Phys. Rev. B 85 115303 | Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths
[36] | Childress L, Gurudev Dutt M V, Taylor J M et al 2006 Science 314 281 | Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond
[37] | Togan E, Dutt M V G, Childress L et al 2007 Science 316 1312 | Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond
[38] | Robledo L, Bernien H, Toeno V D S et al 2011 New J. Phys. 13 025013 | Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond