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Controlled Manipulation with a Bose–Einstein Condensates N -Soliton Train
under the Influence of Harmonic and Tilted Periodic Potentials ∗
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A model of the perturbed complex Toda chain (PCTC) to describe the dynamics of a Bose–Einstein condensate
(BEC) N -soliton train trapped in an applied combined external potential consisting of both a weak harmonic and
tilted periodic component is first developed. Using the developed theory, the BEC N -soliton train dynamics is
shown to be well approximated by 4N coupled nonlinear differential equations, which describe the fundamental
interactions in the system arising from the interplay of amplitude, velocity, centre-of-mass position, and phase.
The simplified analytic theory allows for an efficient and convenient method for characterizing the BEC N-soliton
train behaviour. It further gives the critical values of the strength of the potential for which one or more localized
states can be extracted from a soliton train and demonstrates that the BEC N -soliton train can move selectively
from one lattice site to another by simply manipulating the strength of the potential.
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Recently, Bose–Einstein condensate (BEC) soli-
tons have attracted a great deal of interest both
from the theoretical and the experimental point of
view,[1,2] and have been used to study such di-
verse phenomena as phase coherence,[3−5] matter–
wave diffraction,[6] quantum logic,[7−9] matter–wave
transport,[10,11] matter–wave gratings, and pulsed
matter–wave lasers.[12] Some dynamical issues related
to a BEC N -soliton train, such as the dynamics of a
train of matter–wave solitons confined to a parabolic
trap, optical lattice, and tilted periodic potentials[13]

have been investigated. However, so far the con-
trolled manipulation dynamics of a BEC N -soliton
train trapped in an applied combined external poten-
tial has not yet been analysed. In this Letter, we first
generalize the model of the perturbed complex Toda
chain (PCTC)[14−17] to a BEC N -soliton train, and
further consider the dynamical evolution of a BEC
N -soliton train as well as how to manipulate and con-
trol it subject to the influence of both harmonic and
tilted periodic trapping potentials.[3,4,18] Our analysis
characterizes the dynamic transition from trough to
trough and further predicts when multiple lattice sites
are stable. The analysis also suggests how to selec-
tively move the BEC N -soliton train from one lattice
site to another by simply manipulating the strength
of the potential.

It has been well known that the macroscopic de-
scription of the attractive BEC wavefunction in cigar-
shaped BEC trap geometries is governed by the non-
linear Schrödinger equation with external potential
V (x)[19] (or Gross–Pitaevskii equation[20,21])

i
∂u

∂t
+

1
2

∂2u

∂x2
+ |u|2u = V (x)u, (1)

where u(x, t) is the normalized complex-valued mean-
field variable, V (x) is a real physical potential.

We will consider an applied combined external po-
tential consisting of both a harmonic and tilted peri-
odic component, thus the potential V (x) in Eq. (1) is
given by

V (x) = V0x
2 + V1 cos[Ω(x− x̄)] + V2x, (2)

where V0, V1, and V2 measure the strengths of the
harmonic, periodic, and tilted potentials, respectively.
The parameter x̄ measures the offset of a minimum of
the periodic potential with respect to the minimum of
the harmonic potential.

Note that although V0 ∼ 10−5 − 10−3 is a
small parameter in the range of realistic experimen-
tal conditions,[22,23] for any non-zero values of V0 and
V2 in Eq. (2) the parabolic and tiled potentials tend
to infinity as |x| → ∞, and the external potential
(2) is an unbounded operator. However, for a lattice
of finite size −L ≤ x ≤ L with L being the finite
boundary value of x,[24] the operator (2) is always
bounded. In the following, we consider the above weak
potentials in the axial direction x and assume them
as perturbations iR[u] = V (x)u(x, t). With the effect
of all these physical processes mentioned above, the
BEC dynamics is described by the perturbed nonlin-
ear Schrödinger equation (NLS)

i
∂u

∂t
+

1
2

∂2u

∂x2
+ |u|2u = iεR[u]. (3)

We first generalize the PCTC model to a BEC with
weak harmonic and tilted periodic external potentials
in the adiabatic approximation. We concentrate on
the perturbed NLS Eq. (3). By ‘N -soliton train’ we
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mean a solution of the perturbed NLS equation fixed
up by the initial condition

u(x, t = 0) =
N∑

k=1

u1s
k (x, t = 0),

u1s
k (x, t = 0) = 2νksechζkeiφk ,

ζk(x, t) = 2νk[x− ξk(t)], (4)

ξk(t) = 2µkt + ξk,0, φk(x, t) =
µk

νk
ζk + δk(t),

δk(t) = wkt + δk,0, (5)

where amplitude νk, velocity µk, c.m. position ξk

and phase δk for k = 1, · · · , N are the 4N soliton
parameters. Because in the process of formation of
the BEC N -soliton train, the number of solitons, the
amplitude of an individual soliton, and the separation
between neighbouring solitons produced should vary
with the scattering length and the initial size on the
condensate,[25−27] for the adiabatic approximation the
soliton parameters must satisfy[28]

|νk − ν0| ¿ ν0, |µk − µ0| ¿ µ0,

|νk − ν0||ξk+1,0 − ξk,0| ¿ 1, (6)

where ν0 =
1
N

∑N
k=1 νk and µ0 =

1
N

∑N
k=1 µk are

the average amplitude and velocity, respectively. The
adiabatic approximation uses as a small parameter
ε0 ¿ 1 the soliton overlap which falls off exponentially
with the distance between the solitons. The small
parameter ε0 can be related to the initial distance
r0 = |ξ2 − ξ1|t=0 between the two solitons. Assuming
ν1,2

∼= ν0, we find ε0 =
∫∞
−∞ dx|u1s

1 (x, 0)u1s
2 (x, 0)| ≈

8ν0r0e
−2ν0r0 . In particular, it means that ε0

∼= 0.01
for r0

∼= 8 and ν0 = 1/2.
In the adiabatic approximation, the dynamics of

the soliton parameters can be determined by the
system[14,15]

d(µk + iνk)
dt

= −4ν0(eQk+1−Qk − eQk−Qk−1)

+ ∧k + iΠk, (7)
dξk

dt
= 2µk + Θk,

dδk

dt
= 2(µ2

k + ν2
k) + Σk,

(8)

where Qk(t) = 2iλ0ξk(t)+2k ln(2ν0)+i[kπ−δk(t)−δ0],∑
k = 2µkΘk + Yk, λ0 = µ0 + iν0, ξ0 =

1
N

∑N
k=1 ξk,

and δ0 =
1
N

∑N
k=1 δk. The right-hand sides of Eqs. (7)

and (8) are determined by R[u] though

Πk =
1
2

∫ ∞

−∞

dζk

cosh ζk
Re(R[u]e−iφk),

∧k =
1
2

∫ ∞

−∞

dζk sinh ζk

cosh2 ζk

Im(R[u]e−iφk), (9)

Θk =
1

4ν2
k

∫ ∞

−∞

ζkdζk

cosh ζk
Re(R[u]e−iφk),

Yk =
1

2νk

∫ ∞

−∞

dζk(1− ζk tanh ζk)
cosh ζk

Im(R[u]e−iφk).
(10)

We assume that initially the solitons are ordered
in such a way that ξk+1 − ξk

∼= r0. One can check
Πk

∼= ∧
k
∼= exp(−2ν0|k − j|r0). Therefore, the inter-

action terms between the kth and (k ± 1)st solitons
will be of the order of e−2ν0r0 ; the interactions be-
tween the kth and (k ± 2)nd soliton will of the order
of e−4ν0r0 ¿ e−2ν0r0 .

From the above analysis, for the external potential
V (x)(2) we obtain the results

Πk =0,Θk = 0, (11)

Λk = − V0ξk +
πV1Ω2

8νk

1
sinhZk

sin[Ω(ξk − x̄)]− V2

2
,

(12)

Yk =V0

( π2

48ν2
k

− ξ2
k

)
− π2V1Ω2

16ν2
k

cosh Zk

sinh2 Zk

· cos[Ω(ξk − x̄)]− V2ξk, (13)
∑

k = Yk, and Zk = Ωπ/(4νk). As a result, the corre-
sponding PCTC model to describe the dynamics of a
BEC N -soliton train trapped in an applied combined
external potential consisting of both a harmonic and
tilted periodic component in terms of soliton parame-
ters has the form

dµk

dt
=16ν3

0 [e−2ν0(ξk+1−ξk) cosΦk

− e−2ν0(ξk−ξk−1) cosΦk−1] + Λk,
(14)

dνk

dt
=16ν3

0 [e−2ν0(ξk+1−ξk) sinΦk

− e−2ν0(ξk−ξk−1) sinΦk−1], (15)
dξk

dt
=2µk, (16)

dδk

dt
=2(µ2

k + ν2
k) + Yk, (17)

Φk =2µ0(ξk+1 − ξk) + δk − δk+1. (18)

From Eqs. (15) and (18) we find that
dν0

dt
= 0.

To verify the adequacy of the PCTC model for
the description of the N -soliton train dynamics in ex-
ternal potentials, we perform a comparison of pre-
dictions of the corresponding PCTC model and di-
rect simulations of the underlying NLS equation (3)
with Eq. (2). The perturbed NLS Eq. (3) is solved by
the operator splitting procedure using the fast Fourier
transform. The corresponding PCTC model is solved
by the Runge–Kutta scheme with the adaptive step-
size control. Next, we use mainly the set of param-
eters most widely used in numeric simulations, i.e.,
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νk(0) =
1
2
, µk(0) = 0, ξk+1(0)− ξk(0) = r0, with two

different choices for the phases

δk(0) = kπ, (19)

δk(0) = 0. (20)

Here we are interested in the following three cases.

Fig. 1. (a) Evolution of the PCTC
model (14)–(17) showing harmonic os-
cillations of a four-soliton train ini-
tially shifted relative to the minimum
of the parabolic potential. The ini-
tial conditions are (νj , µj , ξj , δj) =
(1/2, 0, (8j − 3), (j − 1)π), where j =
1, 2, 3, 4. (b) Contour plot of the gov-
erning equations (3) with Eq. (2). The
initial input soliton train is u(x, t =
0) = sech(x−5) ·exp(i ·0 ·π)+sech(x−
13) · exp(i · 1 · π) + sech(x− 21) · exp(i ·
2 · π) + sech(x− 29) · exp(i · 3 · π). The
parameters are the train as the same
as in Eq. (19) with r0 = 8, V0 = 0.001
and V1 = V2 = 0.

Fig. 2. The evolution from an
N -soliton train with parameters as
in Eq. (19) with r0 = 9, V0 =
0, V1 = −0.0005, and Ω =
2π/9: (a) five solitons from an eight-
soliton train at x̄ = 0 and V2 =
−0.0002, with the initial conditions
(νj , µj , ξj , δj) = (1/2, 0, 9j, (j + 3)π),
for j = −3,−2,−1, 0, 1, 2, 3, 4, (b) two
solitons from a five-soliton train at x̄ =
−2.0 and V2 = 0, with the initial con-
ditions (νj , µj , ξj , δj) = (1/2, 0, (9j −
2), (j + 2)π), for j = −2,−1, 0, 1, 2.

Fig. 3. Evolution of the PCTC model
(14)–(17) showing the controlled place-
ment of a three-soliton train from one lat-
tice site to another and the controlled ex-
traction of solitons from the train by ad-
justing the strength of the tilted potential
with initial parameters as in Eq. (19) with
r0 = 8. The parameter values are: in
the time range of 0 ≤ t < 50.0, V0 = 0,
V1 = −0.01, Ω = π/4, x̄ = 0 and V2 = 0;
within the time range of 50 ≤ t < 120.2,
V0 = 0.001 and V1 = V2 = 0, at time
t = 50.0, the tilted periodic is turned off;
in the time range of t ≥ 120.2, V0 = 0,
V1 = −0.01, Ω = π/4, and x̄ = 0, the
tilted periodic potential is turned back on
t = 70.2 time units later thus trapping the
train near the point on the other side of
the origin. Depending on the tilt, a differ-
ent number of solitons can be pulled out
of the train: one soliton from the train
at V2 = −0.00043. The initial conditions
are (νj , µj , ξj , δj) = (1/2, 0, 8j, (j − 1)π),
where j = 1, 2, 3.

Fig. 4. Evolution of the PCTC model (14)–(17) showing
the controlled extraction of solitons from a seven-soliton
train by adjusting the strength of the tilted potential with
parameters as in Eq. (20) with r0 = 9, V0 = −0.00022,
V1 = −0.02, Ω = 2π/9, and x̄ = 0. Depending on
the tilt, a different number of solitons can be pulled out
of the train: three solitons from a seven-soliton train at
V2 = −0.005. The initial conditions are (νj , µj , ξj , δj) =
(1/2, 0, 9j, 0), where j = −3,−2,−1, 0, 1, 2, 3.

Firstly, we only consider the BEC N -soliton train
dynamics in an attractive parabolic potential in the

real experiment.[23] Figure 1 shows good agreement
between the PCTC model (14)–(17) and the numer-
ical solution of the perturbed NLS equation (3) with
Eq. (2). It also demonstrates effects of the attractive
parabolic potential on the motion of the N -soliton
train: the train oscillates around the minimum of the
potential as a whole if its centre of mass is shifted. It
can be seen that expulsive interactions between neigh-
bouring solitons with parameters (19) can be balanced
by attractive force on solitons, so that they remain
bounded by the potential. It is worth noting that the
periods of these motions can be easily changed by ad-
justment of the strength of the attractive parabolic
potential V0. Our results are in remarkable agreement
with the predictions in Ref. [13].

Secondly, we only consider the BEC N -soliton
train dynamics in a tilted periodic potential in a one-
dimensional accelerated optical lattice.[18,29] Fig. 2
demonstrates that an N -soliton train confined in the
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potential can be flexibly manipulated by adjustment
of the strength of the tilted potential and the offset pa-
rameter x̄, respectively. It shows the extraction of a
different number of solitons from the N -soliton train
by increasing the strength of the tilted potential V2

and the offset parameter x̄, while the others remain
bounded. Here the evolution of the BEC N -soliton
train dynamics in a tilted periodic potential is more
complicated since the potential is no longer asymmet-
ric so that an asymmetry in the dynamics arises. The
PCTC model provides an adequate description of the
dynamics of an N -soliton train in a tilted periodic
potential as well (the numerical solution of the per-
turbed NLS equation (3) with Eq. (2), which is not
shown in Fig. 2, in agreement with the PCTC model
is observed).

Finally, we consider two cases for describing
the dynamics of the BEC N -soliton train in the
parabolic[23] and tilted periodic potentials.[18,29]

Case 1. Previous section establishes that the
PCTC model (14)–(17) provides a useful, accurate,
and greatly simplified description of the governing
BEC N -soliton train dynamics given by Eq. (3) with
Eq. (2). Further, the computational time associated
with Eqs. (14)–(17) is orders of magnitude faster than
simulations of Eq. (3) with Eq. (2). The resulting the-
oretical insight can be used to provide more complex
information on controlling the BEC N -soliton train
dynamics. In the example illustrated in Fig. 3, the
theoretical finding provides both a guide to prescrib-
ing the strengths of the tilted periodic and harmonic
potentials, and an estimate for the oscillation period
in the harmonic potential in the absence of the tilted
periodic potential. The two together can be used to
calculate a specific tilted periodic potential, which can
trap the N -soliton train in the right of the origin.
We can turn off the tilted periodic potential, calcu-
late the half period of oscillation required to move the
N -soliton train to the left of the origin, and then turn
the tilted periodic potential back on, thus trapping
the N -soliton train two stable positions away and ex-
tracting of a soliton from the soliton train.

Case 2. Fig. 4 shows that an N -soliton train placed
in the repulsive parabolic, and one-dimensional accel-
erated optical lattice can be flexibly manipulated by
adjustment of the strength of the tilted periodic po-
tential. It demonstrates the extraction of a different
number of solitons from the soliton train by increas-
ing the strength of the tilted periodic potential (V1

and V2), while the others remain bounded. It can be
seen that attractive interactions at zero phase differ-
ence between neighbouring solitons with parameters
(20) can be balanced by expulsive force on solitons.
It is noteworthy to stress that this phenomenon is

in good agreement with the numerical solution of the
perturbed NLS equation (3) with Eq. (2).

In conclusion, we have considered the dynamics
of the BEC N -soliton train in the presence of the
parabolic and tilted periodic potentials, and we have
shown a good agreement between the analytical esti-
mates based on the PCTC model and numerical sim-
ulations of the governing NLS equation. Moreover,
these results provide insight into controlling and ma-
nipulating the BEC N -soliton train for macroscopic
quantum applications.[1−12]
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