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When given an unknown quantum state which may be either a pure or a mixed state in the coherent state
representation, we show that explicit expressions for the teleported state and its fidelity in the teleportation
process (S. L. Braunstein and H. J. Kimble 1998 Phys. Rev. Lett. 80 869) can be obtained without explicit
expansions for the two-mode squeezed vacuum state and the Bell basis in a specified representation.
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In the rapidly developing field of quantum commu-
nication, one of the crucial problems is how to send a
quantum state from one place to another since infor-
mation is encoded in quantum states. This transmis-
sion has two essential points. Firstly, only a quantum
state itself is transported and a carrier of the state
is kept at the original location. Secondly, no infor-
mation about a quantum state to be sent is given to
the sender prior to the transmission. Thus, in the
transmission, it would seem that an unknown quan-
tum state disappears at one place and later emerges
at another one. This process is termed teleportation
of an unknown quantum state. Bennet et all!! first
proposed a protocol for teleporting an unknown quan-
tum state of two-state systems such as spin-1/2 par-
ticles via a classical information channel and a quan-
tum channel built from nonlocal quantum correlation
between the sender and the receiver which share a
quantum entangled state. This protocol has been ex-
tended for various cases.?] Several experiments have
demonstrated the protocol.>4 In addition, teleporta-
tion of continuous variables corresponding to transfer-
ring quantum states in an infinite-dimensional Hilbert
space was suggested by Vaidman, employing the per-
fect correlation in both position and momentum of
two particles in the Einstein-Podolsky-Rosen state.!”]
It is noted that two quadrature-phase components
of a single mode optical field are analogous to posi-
tion and momentum of a particle. Braunstein and
Kimblel® employed quantum nonlocal correlation be-
tween quadrature-phase components of optical fields
in a two-mode squeezed vacuum state as a quantum
information channel and proposed a quantum opti-
cal version of teleportation of continuous variables.
Based on this protocol, Furusawa et al.[”] experimen-
tally demonstrated quantum teleportation of a coher-
ent state of a single-mode optical field.

Either Bennet’s protocol or Braunstein & Kim-
ble’s one for quantum teleportation can theoretically
be described in terms of Wigner functions./®! In this
formulation, one has to know the Wigner functions
for an entangled state which is used to build a quan-
tum information channel and an input state which is
to be teleported. Moreover, the connection of this
description to the original protocol for teleporting a
finite-dimensional quantum state does not become en-

tirely clear. In a teleportation process, four kinds of
quantum states are involved, these are an entangled
state, an input state, the Bell basis and the teleported
state. In a direct approach to the description of quan-
tum teleportation, one expands the former three states
in terms of a complete set of basic states and then
finds the teleported state in the chosen representa-
tion by performing a Bell-state projection. Along this
line, Braunstein and Kimble’s protocol for quantum
teleportation of continuous variables has been stud-
ied in the representations of truncated photon number
states,[®! displaced photon number states, ' coherent
states,1112l and eigenfunctions of quadrapure-phase
amplitude operators.[!3] In fact, those basic states pro-
vide us only with a theoretical working state-space
and do not involve any physical information on the
teleportation process. Moreover, a concrete represen-
tation for the Bell states and the entangled state may
make the presentation of the teleportation protocol
complicated.®! In this Letter, we show that the Bell
states in Braunstein and Kimble’s protocol naturally
provide us with a complete set and one can work out
the teleported state and its fidelity when only given an
input state in the representation of coherent states but
without concrete representations for the Bell states
and the entangled state.

We suppose that two modes A and B of an optical
field are prepared in a squeezed vacuum state

|S) 4B = cosh™' rexp[—a'b' tanh ]|0), (1)

where af(a) and b'(b) are the bosonic creation and an-
nihilation operators for modes A and B, respectively.
When r # 0, modes A and B are entangled. Here we
consider the entanglement between quadratrue-phase
components in modes A and B as a quantum informa-
tion channel for teleportation. If we give mode A to
the sender (Alice) and simultaneously mode B to the
recipient (Bob), i.e., both sender and recipient share
the squeezed state, then a quantum channel is built
between Alice and Bob no matter how far away they
are or where they are in space because of the existence
of the nonlocal quantum correlation between the two
modes on their hands. Now let us hand over an ar-
bitrary quantum state |¢;) to Alice. Although no in-
formation about this state is given to her, we ask her
to send this state to Bob. According to the Braun-
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stein and Kimble protocol,l] the task can be fulfilled
by the following steps. First, Alice performs a joint
Bell-state measurement on the subsystem composed
of mode A and the input mode. Then, she sends the
measured results to Bob via a classical information
channel. Based on Alice’s measurements, Bob per-
forms an appropriate unitary transformation on mode
B. When the squeezing degree of Eq. (1) is infinite, the
output state from Bob can be completely the same as
the input state.[®]

Before the teleportation process starts, the whole
system consisting of the two entangled modes and the
input mode is in the direct product state

| ¥:) = i) ® [S) aB- (2)
The local Bell-state measurement performed by Alice
on the entangled mode A and the input mode theo-
retically means that one expands the whole state (2)
in terms of the Bell states and projects it on to one
of them. In the teleportation protocol,® the Bell-
state measurement consists of a 50/50 beamsplitter
and two homodyne detectors. Imposing the entangled
mode A with the input mode on two input ports of
the beamsplitter, we obtain two mixed modes which
result from both the transmitting part of the entan-
gled mode and the reflecting part of the input mode
or vice versa at two output ports of the beamsplitter.
The action of the beamsplitter to mode A and the
input mode can be represented by the unitary trans-
formation U = exp[(a’a; — ala)r/4] with a!(a;) being
creation (annihination) operators for the input mode.
In the Heisenberg picture, creation operators for the
mixed modes at the two output ports are given by

A A 1
el = 0l = Lgal +al),

A A 1
c; = UTaIU = E(GT - az). (3)

In the Schréodinger picture, after being transformed by
the beamsplitter, the whole state vector (2) becomes

%)) = U|@).
Let us introduce two quadrature-phase operators
R 1 . 1 .
Tj = 5(03' +c;)7 pj = i(cj - c;{)’ i=12. (4)

In the next joint homodyne measurement, one of the
homodyne detectors is arranged to measure eigenval-
ues of the quadrature-phase operator £; and the other
to measure eigenvalues of the quadrature-phase op-
erator ps. The measurement projects the entangled
mode A and the input mode into one of simultane-
ous eigenstates of the commutative operators #; and
P2, depending on which of the eigenvalues are mea-
sured. Suppose that |z;) and |p;) are eigenstates of
the quadrature-phase operators £; and p; with eigen-
values z; and p;, respectively. According to the com-
mutator [£;,5;] = 1/2, we can show that these eigen-
states have the following mutual expansion properties

1 e .
|lzj) = ﬁ/ dpje ~'2Pi%i|p;),
1 * i2pjx;
pj) = N dzje =P |z;), (5)
— 00

and satisfy the completeness conditions

[ aelenwi=1 [ anbiwi=1 ©
and hold the orthogonal conditions (z;|z) = d(z; —
z) and (p;|pj) = &(p; — p}). When the two ho-
modyne detectors have outputs x; and psy, the en-
tangled mode A and the input mode are projected
into the eigenstate |z1,p2) = |z1) ® |p2), and mean-
while the entangled mode B is placed into the state
|¥(x1,p2)) = (x1,p2|¥:). In the Heisenberg picture,
simultaneous eigenstates |z, pa) are obviously just the
Bell states in the teleportation protocol under consid-
eration. In the Shrddinger picture, the joint homo-
dyne measurement makes |¥/) jump to (z;, pa|U| @),
where |z;,p,) is one of simultaneous eigenstates of the
quadrature phase operators #; of the input mode and
P of the entangled mode A. Thus, in the Schrédinger
picture, the Bell states are UT\xi,pa>. By use of
Egs. (3), it is easily shown that U”xi,pa) are just si-
multaneous eigenstates of the quadrature phase oper-
ators &7 and ps. It should be pointed out that the
joint homodyne measurement cannot distinguish the
projective states |z;,p,) from |z1,p2) because both
have the same eigenvalues. Choosing a complete set of
states, one can find out the corresponding representa-
tion for the Bell states. Previous studies have obtained
the representations for the Bell basis in the truncated
photon number state space,l® the displaced photon
number state space,[!% the coherent state space,1!]
and the space of eigenwavefunctions of the quadrature-
phase amplitude operators.['3! In the following discus-
sions, we will see that, to obtain explicit expressions
for the teleported state in mode B and its fidelity, one
must not work in a concrete representation for the Bell
basis.

In the representation of coherent states, an input
state can be expanded as

1

lpi) = /d2ap(a)e*%'°“ze°‘“i 0), (7)

where the complex amplitude P(a) = {a|¢;)/7. Sub-
stituting the inverse transformations of Eq.(3) into
Eq. (2), we have

1, 2
| @) :coshflr/dzaP(a)efi‘al

- exp {%[(a — tanhrb") (%, — ipy)

— (a + tanhrb!) (@, — 1132)} }|o>. (8)

By using the completeness conditions (6), the ex-
pansion relations (5), and the operator theorem
e caj+dp; e C.:I:Aje dije —icd/4 —e dﬁje cxj e ied/4 with c-
numbers ¢ and d, we can rewrite state (8) as

| ;) = /dﬂ?ldp2|¢(wlapz)> ® |z1,p2), 9)

where [¢)(z1,p2)) is the unnormalized state of mode B
and is given by

|4 (21,p2)) = \/gcoshlrexp(—|2|2)/d2ap(a)
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1
-exp | — §|a\2 + V22" a| exp[(a — V22)bT tanhr](\l()g)

with z = 1 — ips. In Eq.(9), we have expanded the
state of the whole system in terms of the Bell states.
After the Bell-state measurement, mode B is forced
into state (10).

In the limit » — oo, the entanglement between
modes A and B becomes perfect and the state vec-
tor (10) must be entirely the same as the input state
(7) except a normalization factor. In order to sat-
isfy this requirement, compared Eq. (10) with Eq. (7)
under the limitation, we note that the unitary trans-
formation D(3) = exp(Bb’ — 3*b) with the amplitude
B = —\/2(z; — ipy) has to be applied to mode B. Af-
ter performing the unitary transformation DT (3) on
Eq. (10), we obtain the unnormalized state for mode

B
|p(z1,p2)) = \/gcosh1 rexp[—2(1 — tanhr)|z|?]
. /dzaP(a) exp [— %|a\2 +v2(1 - tanhr)z*a}

-exp{[a tanh 7 + v/2(1 — tanh r)z]b' }|0). (11)

Since this unitary transformation is dependent on Al-
ice’s measurement results and is performed on the side
of Bob, to accomplish the transformation, Bob has to
know Alice’s measurement outputs (z1,ps2). Because
the measurement results are classical quantities, Al-
ice can send them to Bob via a classical information
channel.

After the processes mentioned above, mode B
can be placed in the normalized state |®(z1,ps)) =
w2(x1,p2)|¢(21,p2)), where w(zy,ps) is the prob-
ability density for outputs (z1,p2) of the joint homo-
dyne measurement and is given by

wler,pa) = 2 cosh™ 1 [ @ad? 8PP () (Bla)

1
—2

exp{ 2 cosh r[(ml 23
(- 55} .
It is clear that |®(x1,ps2)) approaches the input state
(7) when r — oco. This means that in this limitation,
an unknown quantum state can exactly be teleported
from Alice to Bob. If the squeezing degree is finite,
however, we can see that the complex amplitudes of
coherent states in Eq. (11) are not exactly the same as
that in Eq. (7). Therefore, statistical properties of the
original state are distorted in the teleportation pro-
cess. When r is sufficient large, |®(z1,p2)) may be
viewed as an approximate copy of Eq. (7).

From the above discussion, it is obvious that the
teleportation is a process in which an unknown quan-
tum state is disintegrated into a projective state of
the whole system on one of the Bell states, which
is quantum information and can be instantaneously
transferred from a sender to a remote receiver via the
quantum channel, and the classical information that
exhibits which of the Bell states the entangled mode A
and the input mode are projected on. When the pro-

(@t 5))

jective state is in a unitary transformation different
from the input one, based on the classical informa-
tion, Bob can reconstruct the input state on his side.

If eigenvalues (x1,p2) of &; and po were discrete,
the Bell basis would be discrete and the process men-
tioned above would be just the version of teleporta-
tion of an unknown quantum state, which was first
proposed by Bennet et al.ll] There exist only four dis-
crete Bell states in the original teleportation, each
of which can be measured with a 1/4 probability,
respectively. By use of only four Bell-state detec-
tors in the protocol, one can definitely realize the
teleportation in a single joint measurement. In the
present case, however, (z1,p2) are continuous vari-
ables and are measured with the probability density
w(wxy,p2), and the number of Bell states |z1,ps) is in-
finite. Therefore, only when the two homodyne detec-
tors are definitely locked at a pair of outputs (z1,p2),
the mode B could be probably placed in | ®(z1,ps)) in
the single joint homodyne measurements. Therefore,
|®(z1,p2)) is a conditional output state. The fidelity
of the conditional teleportation can be measured by
the squared modulo of the overlap between the tele-
ported state and the input state, which is given by
F(z1,p2) = [{pi| ®(x1,p2))|?. If a series of the en-
tirely same input states are in sequence given to Alice
and the two homodyne detectors are able to respond
to all of eigenvalues of the quadrature-phase operators
in the teleportation process, regardless of which state
appears on Bob’s side, the teleported field is into a
mixed state, which is described by the density matrix

b / day dpaw(zy, p2)| @(x1,p2)){ D(z1, p2)|

- / dzydpalé(z1, p2)) (b1, p2)]- (13)

Since (z1,p2) is continuous and measured probably,
in this case, an averaged fidelity is appreciate for the
teleportation process and is given by

F, Z/dwldpzw(fvlam)F(whm)
1
:5(1 + tanhr) / d?ad?pd2ed?y
- P(a)P(§)P(8)"P(n)*
1
cexp | = 5(a? + 167 + nf” +18])|
1 * *

cexp { 5[+ &) +5%)

+ tanhr(a — €)(n" — ﬂ*)]}. (14)
Using this general and explicit expression, we can eas-
ily calculate the fidelity of the teleportation for various
quantum states, especially for the discrete linear su-
perposition of coherent states. For example, the aver-

aged fidelity for a linear superposition of two coherent
states c¢1|a1) + ca|ag) is given by

1 «
F, :5(1 + tanhr){l —2|ereq? |1+ e HRe(aa”)

1 *
_ ¢~ (I+tanhr)(Jar|* +]oz|* —2Re(ara3))
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1 *
_ ¢ 3(1-tanh r)(\ocl|2+\o¢2|272Re(a1a2))]

ler] + feaf? + 2Re(ercze %)

.e%(|a12+laz|2)}_2}. (15)

For a coherent state, Eq.(15) reduces to F, = (1 +
tanhr)/2. When a; = —az and ¢; = 1 and ¢y =
exp(ip), Eq. (15) recovers the result given in Ref. [6].
In the two limits » = 0 and » — oo, F, = 0.5 and 1.0,
respectively. This means that when F, is beyond 0.5,
the quantum nonlocal correlation between the modes
A and B of the squeezed vacuum state definitely plays
a role in the teleportation process.

The above result can easily be generalized to an
input mixed state. In Glauber’s representation for
a density matrix, an input state p; can be written
as i = | dPad?BR(a,A)|a)(5l, where R(a,f) =
(a|p;]B)/m2. Following the same procedure as stated
above, we have the average normalized density matrix
for mode B: p, = [dzydpow(z1,p2)p(x1,p2), where
the conditional normalized matrix density p(z1,p2) is
given by

2
p(x1,ps) == cosh™ 2 rexp[—4(1 — tanh7)|2|?]
T

[ @adsr(a, 8 exp | - G (lal + 15
. exp[ﬁ(l — tanhr)(z*a + z8%)]
-exp{[atanhr + v2(1 — tanhr)z]b}|0)

® (0| exp{[8* tanhr + v2(1 — tanh r)z*]b},
(16)

and the probability density for measuring results
(z1,p2) is given by

w(xy,p2) :%coshfzr/d2ad2ﬂR(a,ﬂ)<,8|a>

. 2\/5
(=gt}

The averaged fidelity is
— tr(ﬁz & pAa)
O tr(pi @ pi)

— 1+ tanhr) [ ad?Bed Rl B)R(E )

-exp{ *2C05h727“[<331 - (a+ﬂ*)>2

(17)

5 (lal? + 16 + > + 161
exp{3l(a+ ) + 57 + tanhr(a — )" - 5]}

. [/dzad2ﬂd2fd2nR(a,ﬁ)R(g,n)<g|§><n|a>]_1_

.exp{_

(18)
In order to make F, = 1 when r — oo, we have in-
troduced a normalized factor tr(p; ® p;) in Eq. (18)
because tr(p; ® p;) < 1 for a mixed state.

Besides the above general coherent state repre-

sentation for an input state, a density matrix may
have a diagonal representation in terms of coherent

states:191% 5, = [d?aP(a)|a)(e|. In this represen-
tation, we can find the conditional density matrix for
mode B

2
p(x1,pa) == cosh % r exp[—4(1 — tanhr)|z|?]
T

- [ @aP(@)expl-faf
-exp[V2(1 — tanh7)(z*a + za*)]
- exp{[a tanhr + \/5(1 — tanhr)z]b}|0)

® (0] exp{[a” tanhr + \/5(1 — tanhr)z*]b},
(19)

and the probability density for measuring eigenvalues
x1 and po

2
w(z1,p2) = cosh72r/d2aP(a)

-exp{ — 2cosh™2 r[(wl — %(a + a*))2

i )2
+ (- g5t-a0) |}
The averaged fidelity is given by
Fy— %(1 + tanhr){ /and%P(a)P(ﬂ)

1
2

(20)

. exp [_ (14 tanhr)(|a|? + |8)* — 2Re(aﬂ*))]}

{ [ EadP(@)P(s)

exp [~ L(of? + 8P - 2Re<aﬂ*>)}} (21)

From the above discussions, we can see that Braun-
stein and Kimble’s protocol can also be used to tele-
port unknown mixed quantum states in completely
the same way as it is used for pure states since the
teleportation process is, in principle, a linear one.
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