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The discovery of new superconducting materials, particularly those exhibiting high critical temperature (𝑇c),

has been a vibrant area of study within the field of condensed matter physics. Conventional approaches primarily

rely on physical intuition to search for potential superconductors within the existing databases. However, the

known materials only scratch the surface of the extensive array of possibilities within the realm of materials. Here,

we develop InvDesFlow, an artificial intelligence (AI)-driven materials inverse design workflow that integrates

deep model pre-training and fine-tuning techniques, diffusion models, and physics-based approaches (e.g., first-

principles electronic structure calculation) for the discovery of high-𝑇c superconductors. Utilizing InvDesFlow,

we have obtained 74 thermodynamically stable materials with critical temperatures predicted by the AI model

to be 𝑇c ≥ 15K based on a very small set of samples. Notably, these materials are not contained in any existing

dataset. Furthermore, we analyze trends in our dataset and individual materials including B4CN3 (at 5GPa) and

B5CN2 (at ambient pressure) whose 𝑇cs are 24.08K and 15.93K, respectively. We demonstrate that AI technique

can discover a set of new high-𝑇c superconductors, outline its potential for accelerating discovery of the materials

with targeted properties.
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Introduction. Superconducting materials have nu-

merous applications in modern society since they

were discovered, [1] particularly in magnetic reso-

nance imaging, [2] fueling advances in nuclear fusion

technology. [3] Superconductor-based devices are demon-

strating potential for achieving scalable quantum informa-

tion processors, advanced sensors, and efficient communi-

cation systems. [4–6] Many of these devices use conventional

Bardeen-Cooper-Schrieffer (BCS) superconductors, [7]

which demand costly helium-based cooling. Hence, search-

ing superconductors with high superconducting critical

temperature (𝑇c) is vital for propelling technological

progress in these dynamic areas.

Over the past decade, substantial advancements

have been achieved in searching high-𝑇c superconduc-

tors. For example, a superconducting transition with

𝑇c ∼ 36K was experimentally observed in high-pressured

Scandium, which is the highest record for elemental

superconductors. [8] The discovery of superconductivity in

bilayer La3Ni2O7 under pressure raises superconducting

𝑇c of nickelates to the liquid-nitrogen temperature zone. [9]

Moreover, lots of theoretical work predicted superconduc-

tivity in hydrides, [10–15] where superconductivity in H3S

under pressure was experimentally confirmed. [16]

Recently, a series of artificial intelligence (AI)-

driven inverse design methodologies for materials have

emerged, [17] such as MatAltMag [18] which is an AI-based

search engines to accelerate discovery of altermagnetic

materials. Meanwhile, the generative AI models were

used to identify the new conventional superconducting

materials. [19–25] This paradigm shift demonstrates the

transformative potential of AI in accelerating the explo-

ration of functional materials with targeted properties

through systematic data-driven approaches. Wines et

al. [26] have employed crystal diffusion variational auto-

encoder (CDVAE) [27] to generate data based on the

JARVIS-DFT database, [28] subsequently employing the

atomistic line graph neural network (ALIGNN) [29] for 𝑇c

forecasting. Using high-throughput density functional the-

ory (DFT) calculations, 34 dynamically stable 2D su-

perconductors with 𝑇c ≥ 5K from over 1000 candidates

in the JARVIS-DFT database were identified. [20] More-

over, Choudhary K and Garrity K [19] leveraged electron–

phonon coupling (EPC) calculations, assisted by deep-
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learning models for efficient prediction of superconducting

properties, to identify 105 conventional superconductors

with 𝑇c ≥ 5K from a pre-screened set of 1736 materials.

Significant progress has also been made in using machine

learning to search for superconducting hydrides [30–32] and

carbide superconductors. [33] Based on InvDesFlow, we

have also identified a candidate material, Li2AuH6, with

𝑇c ∼ 140K. [34] Although numerous studies have high-

lighted the application of machine learning in this field,

these approaches primarily rely on chemical formulas or

searches based on existing datasets. They often lack the

intricate atomic structure details crucial for understand-

ing superconducting behavior and are limited in explor-

ing crystal materials beyond known databases. To truly

advance the discovery of new superconductors, it is es-

sential to incorporate detailed structural information and

broaden the scope beyond existing data. So far, the con-

ventional methods (such as elemental substitution or phys-

ical insight) have limited success in finding new high-𝑇c

superconductors among the existing data. The rise of AI

technology brings a transformative approach, potentially

reshaping our path to solving this challenge.

In this work, we developed InvDesFlow, an AI-driven

inverse design of materials workflow to explore high-𝑇c

BCS superconductors, integrating diffusion model, forma-

tion energy prediction model, ALIGNN, pre-training and

fine-tuning technique, atom docking based on pre-trained

model, active learning technique, and physics-based meth-

ods (e.g., first-principles electronic structure calculations),

and meanwhile sufficiently incorporating detailed struc-

tural information. Leveraging a limited dataset of high-

𝑇c BCS superconductors (105 superconductors with 𝑇c ≥
5K [19]), we have obtained 74 thermodynamically stable

materials exhibiting critical temperatures predicted by the

AI model to be 𝑇c ≥ 15K. Furthermore, we analyze trends

in our results, focusing on specific materials such as B4CN3

and B5CN2, with 𝑇c of 24.08K and 15.93K, respectively.

InvDesFlow stands out for its unique capability to ob-

tain crystal structures absent from the existing material

databases, effectively pioneering new avenues in the quest

for high-𝑇c superconductors. Its adaptability allows itself

to be tailored for a diverse array of functional materials,

each with specific desired properties, thereby greatly ex-

panding its utility across the field of materials science.
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Fig. 1. (a) The proposed InvDesFlow framework. AI-accelerated discovery of high-𝑇c superconductors includes generative

model for predicting crystal structures, pre-trained model for superconductivity classification, formation energy prediction

model, screening model for superconducting transition temperature prediction, and validation using DFT calculation. (b)

Symmetry-constrained crystal generation model. The generation of superconducting crystals defines two Markov processes:

the black arrows represent the gradual addition of noise to a BCS superconducting crystal, resulting in a random unit cell,

while the red arrows indicate the gradual denoising from a prior atomic distribution to generate the original superconducting

crystal structure. The structures predicted by the generative AI have not yet converged in terms of energy and forces, requiring

further post-processing. Here, we use DPA2 [35] to predict the interatomic potentials (at DFT-level accuracy) and employ

the atomic simulation environment [36] to simulate the structural relaxation. (c) Formation energy prediction model. A lower

formation energy of a material indicates that its constituent elements adopt the lowest-energy configuration arrangement, which

generally implies thermodynamic stability. In this step, we predict the formation energies of structurally optimized materials for

subsequent screening of promising candidates. This model covers the sources of training data for formation energy prediction,

crystal data representation using atomic graphs with an 8 Å cutoff radius, and the interactions between nodes, edges, and

global state representations within the model’s architecture. (d) Superconducting classification model. This model includes a

high-throughput screening process for pre-training and fine-tuning data, along with a graph auto-encoder architecture based

on a graph neural network for superconductivity classification.
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Workflow Overview. InvDesFlow utilizes multiple

AI methods and DFT calculations [Fig. 1(a)] for gener-

ating and screening high-𝑇c superconductors. Specifi-

cally, inspired by the DiffCSP model, [37] we constructed a

symmetry-constrained superconducting crystal generation

model, based on diffusion generative models [38] and equiv-

alent graph neural networks. [39] This model generates new

superconducting structures. We also built a superconduct-

ing classification model using pre-training techniques, [40]

graph auto-encoder architectures, [41] and optimal trans-

port theory [42] to determine whether or not the gener-

ated crystals exhibit superconducting properties. To fur-

ther assess the stability of the materials, we retrained a

formation energy prediction model based on the MEG-

NET architecture [43] with improvements. Next, we used

ALIGNN [29] to predict the superconducting transition

temperatures of these materials and screened for high-𝑇c

superconducting candidates. Finally, by comprehensively

considering the predicted 𝑇c and the computational cost

of DFT calculations, we selected three representative can-

didate materials with convergence tests and verified su-

perconducting transition temperatures using DFT calcu-

lation. Adopting active learning [see Section 10 in Supple-

mentary Materials (SM)], we incorporated the discovered

superconductors into training set.

Symmetry-Constrained Crystal Generation Model. In

crystal structures [Fig. 1(b)], the atoms exhibit a periodic

distribution, with the smallest repeating unit being the

unit cell, denoted by ℳ, which can be represented as ℳ =

(𝐴,𝑋,𝐿). Here, 𝐴 = [𝑎1,𝑎2, ...,𝑎𝑁 ] ∈ Rℎ×𝑁 denotes the

atomic types within the unit cell, 𝑋 = [𝑥1,𝑥2, ...,𝑥𝑁 ] ∈
R3×𝑁 represents the Cartesian coordinates of each atom,

and 𝐿 = [𝑙1, 𝑙2, 𝑙3] ∈ R3×3 is the lattice matrix used to

describe the periodicity of the crystal. We employed an ab

initio crystal generation approach to generate supercon-

ducting crystal structures. Specifically, this involves gen-

erating a superconducting crystal ℳ from a given number

of atoms 𝑁 within the unit cell, with a sampling distribu-

tion defined as:

𝑝(ℳ, 𝑁) = 𝑝(𝑁)𝑝(ℳ|𝑁), (1)

where 𝑁 remains unchanged during the generation pro-

cess. The distribution 𝑝(𝑁) is calculated from the training

set, while 𝑝(ℳ|𝑁) is generated based on the model. Stan-

dard denoising a diffusion probabilistic model (DDPM) [38]

can be used to generate 𝐿 and 𝐴, and their loss functions

take the same form as:

ℒ𝐿/𝐴 = E𝜖∼𝒩 (0,𝐼)[‖𝜖− 𝜖𝐿/𝐴(ℳ𝑡, 𝑡)‖22]. (2)

The denoising terms 𝜖𝐿(ℳ𝑡, 𝑡) and 𝜖𝐴(ℳ𝑡, 𝑡) are pre-

dicted by an equivalent denoising graph neural networks

[short as EDGNN in Fig. 1(b)], and 𝒩 (0, 𝐼) represents a

standard normal distribution, just like MatterGen [44] and

DiffCSP. [37] Given the periodicity of 𝑋, it is generated

using a score-matching based framework. [45] For further

details, see Section 1 of SM. In diffusion generative mod-

els, the denoising terms correspond to the noise compo-

nents that the model aims to predict during the reverse

diffusion process. EDGNN, as a graph neural network, is

designed to estimate these denoising terms, with its per-

formance optimized through the joint training of multi-

ple loss functions. Utilizing 105 BCS superconductors, [19]

we trained the model to generate novel crystal structures,

excluding those in the training set and with overlapping

compositions in the Materials Project (MP) database. [46]

Since generative models often produce non-ground-state

structures, we performed geometry optimization using the

neural networks atomic simulation environment [36] and L-

BFGS algorithm [47] to refine the generated structures.

Superconducting Classification Model. Initially, we

extract 144,595 crystal data entries from the Materials

Project (MP) database. [46] We first classified the mate-

rials into two groups: magnetic and non-magnetic. Subse-

quently, we refined the non-magnetic category into conduc-

tors, semiconductors, and insulators. Then, we designated

insulators and magnetic materials as negative samples, and

conductors and semiconductors as positive samples, as il-

lustrated in Fig. 1(d). The model is based on a pre-trained

graph neural network (GNN) that utilizes material crystal

structure information to predict materials, [18,41] consists of

a graph convolutional network encoder and a decoder that

reconstructs the graph features based on optimal transport

theory [see Fig. 1(d) and SM Section 8]. To obtain hid-

den layer representations related to superconductivity, we

pre-trained the model using the positive samples. During

the fine-tuning stage, we employed the pre-trained encoder

and used up-sampling techniques to balance the number

of the BCS superconductors and negative samples for bi-

nary classification model. Subsequently, we obtained the

classifier model that achieved a discrimination success rate

of 99.04% for the 105 BCS superconductors. Utilizing this

model, we evaluated the candidate structures generated by

the generative model.

Formation Energy Prediction Model. To further assess

the stability of potential superconductors, we predict the

formation energy of crystals as an indicator of their sta-

bility [Fig. 1(c)]. The AI algorithms like CGCNN [41] and

SchNet, [48] while fast, lack the required precision for for-

mation energy predictions. Inspired by MEGNET, [43] we

trained the model using 380,000 crystal structures from

GNoME [49] and 60,000 crystal structures from MP. [46]

Next, we increased the cutoff radius for constructing

atomic graphs from 5 Å to 8 Å, enabling the model to

capture more long-range atomic interactions to more ac-

curately simulate atomic interactions. Recognizing the

direct correlation between crystal formation energy and

atomic bonding strength, we have incorporated eight new

atomic features into our prediction model. This enhance-

ment offers a more comprehensive representation of crystal

data, as elaborated in SM Section 9. The original MEG-

NET benchmark reported a mean absolute error (MAE)

of 28meV per atom, while our improved model achieved

the same level of accuracy as GNoME, with an MAE of

21meV per atom, despite GNoME not providing details

of the algorithm. Since we are particularly interested in

high-𝑇c superconducting materials, we used ALIGNN [29]
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to predict the superconducting transition temperatures of

these materials and applied a 15K threshold, resulting in

74 candidate high-𝑇c superconductors. After performing

computational complexity estimations for these 74 candi-

date materials, we selected three representative materials

(B5CN2, B4CN3, and B4C3N) for detailed DFT calcula-

tions and obtained two stable superconductors.

Predicted High-𝑇c Materials. By performing the DFT

calculations, we studied the electronic structure, phonon

properties, and EPC of B5CN2 and B4CN3 (See SM Sec-

tion 1–5 for crystal structures and additional results). In

Fig. 2, we show the band structures of B5CN2 and B4CN3

(5GPa). The results of DFT calculations and Wannier

projection show good consistence and suggest that B5CN2

and B4CN3 (5GPa) are metallic. The atomic-orbital re-

solved density of states (DOS) shows that the 2p orbitals

of B, C, and N atoms mainly contribute the Fermi surfaces.

Next, we investigate the dynamical stability of B5CN2

and B4CN3. At ambient pressure, we find that B5CN2

is dynamically stable, while B4CN3 shows a maximum

imaginary-frequency phonon of ∼−7.7meV along the 𝑅-

𝑍 path. By applying pressure of 5GPa, the imaginary

phonon of B4CN3 disappears. Hence, we show the phonon

spectrum of B5CN2 and B4CN3 (5GPa) in Figs. 3(a) and

3(c) and further study the EPC of these two materials.

The calculated Eliashberg spectral function 𝛼2𝐹 (𝜔) and

accumulated EPC constant 𝜆(𝜔) are exhibited in Figs. 3(b)

and 3(d), and the mode-resolved 𝜆𝑞𝜈 is added in the

phonon spectrum. The EPC constants 𝜆 of B5CN2 and

B4CN3 (5GPa) are integrated to be 0.61 and 0.72, respec-

tively. Using the McMillan–Allen–Dynes formula [50,51]

𝑇c =
𝜔log

1.2
exp

[︁ −1.04(1 + 𝜆)

𝜆(1− 0.62𝜇*)− 𝜇*

]︁
, (3)

where 𝜔log is the logarithmic average frequency. For

a detailed definition, please refer to SM Section 1.

X M ZGG A H Z

Y M X ZGG V T R Z

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

E
n
er

gy
 (

eV
)

E
n
er

gy
 (

eV
)

DOS

DOS

Total
B p

C p

N p

(a)

(c)

(b)

(d)

Fig. 2. (a) and (b) Electronic structure and DOS of B5CN2

at ambient pressure. (c) and (d) Electronic structure and

DOS of B4CN3 under 5GPa. The blue solid lines and red

circles represent the bands obtained by DFT and Wannier

projection, respectively. The Fermi level is set to be zero.
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Table 1. Stability evaluation of materials generated by dif-

ferent AI models, including thermodynamic stability (for-

mation energy less than 0), synthesizability (hull energy

equal to zero), atomic forces (atomic interactions predicted

to be within the precision of DFT-optimized structures),

and dynamical stability (absence of imaginary frequencies

in phonon spectra). Abbreviations used: FE for formation

energy, Ehull for convex hull energy, EF for atomic forces

and energy, and DS for dynamical stability.

Model FE Ehull EF DS

CDVAE [27] X × × ×
Con-CDVAE [52] X × × ×

DiffCSP [37] X × × ×
CrystaLLM [53] X × × ×
MatterGen [44] X × × ×
InvDesFlow X × X ×

The superconducting 𝑇c of B5CN2 and B4CN3 (5GPa) are

estimated to be 15.93K and 24.08K, respectively, when

the Coulomb pseudopotential 𝜇* is set to 0.1.

Discussion. Recently, several studies have

utilized generative models to explore high-𝑇c

superconductors. [19,20,22,26] Wines D et al. [26] employed

CDVAE to generate data on the JARVIS-DFT dataset, [28]

subsequently employing the ALIGNN [29] for 𝑇c forecast-

ing. Compared to existing methods, InvDesFlow has

seen improvements in three aspects. Firstly, our method

is capable of effective generation based on a few posi-

tive samples (i.e., 105 samples with 𝑇c ≥ 5K). Unlike

CDVAE, [27] which randomly generates chemical formu-

las before predicting structures, our approach directly

generates structures. By directly generating structural

configurations, our method adeptly navigates the spatial

intricacies of superconductors, facilitating the genesis of

plausible chemical entities. Secondly, we have integrated a
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sophisticated post-processing phase employing the DPA-2

model [35] for atom docking. The discussion on DPA-2

achieving structure relaxation with DFT-level accuracy

can be found in SM Section 7. This step meticulously

circumvents atomic clashes, refines bond lengths to more

rational values, and guarantees the equilibrium of forces

exerted on each atomic constituent.

The stability of structures generated by AI methods

is discussed from multiple aspects, including thermody-

namic stability, Ehull, energy and interatomic forces, and

dynamical stability. Current leading generative AI algo-

rithms, such as MatterGen, [44] DiffCSP, [37] CDVAE, [27]

Con-CDVAE, [52] and CrystaLLM, [53] generate new crys-

tal structures by learning from the distribution of crys-

tals in the training set. Due to specific chemical compo-

sitions typically satisfying the formation energy < 0 cri-

terion, these generated materials demonstrate good ther-

modynamic stability. However, the Ehull of directly gen-

erated materials is usually not equal to 0, requiring fur-

ther DFT calculations to confirm their stability. Addi-

tionally, current AI algorithms cannot directly achieve the

precision of DFT structural relaxation in predicting in-

teratomic forces and energies, so the generated structures

often require post-processing to optimize atomic interac-

tions. Regarding dynamical stability, typically referring to

whether the material’s phonon spectrum contains imagi-

nary frequencies, this is an aspect that generative AI meth-

ods currently cannot directly address. Therefore, further

optimization and validation are necessary to ensure the

complete stability of the generated materials.

Existing methods often predict superconducting tran-

sition temperatures without aforehand confirming the ma-

terials’ superconductivity, which is problematic. We ad-

dress this by introducing a superconducting classification

model. We improved the formation energy prediction

model based on GNoME, [49] increasing its precision from

28meV to 21meV. Lastly, active learning progressively

expands the chemical space of high-𝑇c superconducting

materials in iterative reinforcement generative learning.

These refinements enhance our method’s effectiveness and

establish a new standard for exploring and predicting high-

𝑇c superconductors, leading to potential breakthrough in

materials science and technology.

Although InvDesFlow demonstrates potential in the

discovery of high-temperature superconducting (HTS) ma-

terials, its main limitation lies in the limited availability

of high-quality HTS data. The current generative model

relies on 105 HTS data points, and the ALIGNN 𝑇c pre-

diction model is also based on this dataset. As a result,

the 74 newly generated candidate materials may inherit

features from the original data, with most containing ni-

trogen atoms and 𝑇c values concentrated between 15–20K.

To overcome this limitation, we plan to expand the dataset

by incorporating external HTS data and continuously op-

timize the 𝑇c prediction model, particularly by introducing

more diverse chemical compositions and crystal structures.

Additionally, through iterative active learning, we aim to

explore potential HTS materials not included in the ex-

isting databases. We believe that with the expansion of

the dataset and optimization of the models, InvDesFlow

will be able to overcome its current limitations and further

advance the discovery of HTS materials.

In conclusion, InvDesFlow integrates a suite of ad-

vanced methodologies, including generative model, forma-

tion energy prediction model, pre-training and fine-tuning

strategy, ALIGNN, and first-principles electronic structure

calculations. This AI search engine has not only predicted

74 superconducting material candidates (see SM Section 6)

with 𝑇c > 15K based on a modest set of positive samples

(105 samples with 𝑇c ≥ 5K), but also identified two ideal

high-𝑇c candidates: B5CN2 (𝑇c = 15.93K) and B4CN3

(𝑇c = 24.08K). Notably, this engine is capable of discov-

ering crystal structures that are not yet documented in

existing material datasets, thereby opening up new hori-

zons in the search for high-𝑇c superconductors. Moreover,

the AI search engine’s flexibility expands its utility in ma-

terials science for various functional materials.

Open Data and Code Availability. In order to

support the development of the field of materials in-

verse design and to enable readers to replicate our

work, we have made all the data and code publicly

available. The code repository can be accessed at

https://github.com/xqh19970407/InvDesFlow.
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[42] Rüschendorf L 1985 Probab Theory Relat Fields 70 117

[43] Chen C, Ye W, Zuo Y, Zheng C, and Ong S P 2019 Chem.

Mater 31 3564
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