
Chinese Physics Letters 42, 010302 (2025)

Density-Functional Theory of Quantum Droplets

Fan Zhang(张帆)1,2 and Lan Yin(尹澜)2*

1Hefei National Laboratory, Hefei 230088, China
2School of Physics, Peking University, Beijing 100871, China

(Received 28 October 2024; accepted manuscript online 11 December 2024)

In quantum droplets, the mean-field energy is comparable to the Lee-Huang-Yang (LHY) energy. In the

Bogoliubov theory, the LHY energy of a quantum droplet has an imaginary part, which has been neglected in

most studies for practical purposes. Thus far, most theoretical studies on quantum droplets have been based on

the extended Gross-Pitaevskii (GP) equation, which includes the contribution of the LHY energy to the chemical

potential. In this article, we present the density-functional theory of quantum droplets. In our approach, the

quantum fluctuations in quantum droplets, as described by an effective action, generate a real correlation energy

that can be determined consistently. Using density-functional theory, we calculated the energy, quantum depletion

fraction, and excitations of the droplet. Our results for the ground-state energy and quantum depletion fractions

were consistent with the Monte Carlo results. We also discuss the implications of our theory.
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1. Introduction. The creation of quantum droplets rep-

resents a breakthrough in the study of ultracold atoms in

recent years. Quantum droplets have been experimentally

realized in various systems, including dipolar Bose gases

such as 164Dy [1–5] and 166Er [6] and binary boson mix-

tures such as homonuclear 39K [7–9] and heteronuclear 39K-
87Rb mixtures. [10] In these experiments, quantum droplets

were generated by tuning 𝑠-wave interactions using the

Feshbach-resonance technique. Quantum droplets in bi-

nary dipolar mixtures have also been predicted. [11,12] In

these quantum droplets, the mean-field energy is tuned to

a weakly attractive energy, while the repulsive Lee-Huang-

Yang (LHY) energy [13] arising from the quantum fluctua-

tions becomes equally significant. The interplay between

these two energies gives rise to a quantum-droplet state

that is both self-bound and stable.

Due to the mean-field instability, the Bogoliubov the-

ory, which describes Gaussian fluctuations around a uni-

form condensate, predicts imaginary excitation energies in

the long-wavelength limit, indicating dynamical instabil-

ity. Petrov [14] noted that these unstable excitations con-

tribute minimally to the LHY energy and may become

stabilized after renormalization by integrating out high-

energy excitations. In practice, the LHY energy, with

its imaginary component neglected, is widely applied in

the extended Gross–Pitaevskii equation (EGPE) [14,15] to

simulate quantum droplets. However, recent studies em-

ploying the Beliaev theory [16–18] have demonstrated that

the dynamic instability predicted by the Bogoliubov the-

ory is artificial. When higher-order quantum fluctuations

are accounted for, the phonon energy becomes stable, as

shown for both nondipolar Bose mixtures [16,17] and single-

component dipolar Bose gases. [18]

In this paper, we present a density-functional theory of

quantum droplets that self-consistently incorporates quan-

tum fluctuations without encountering imaginary energies.

The core of this method lies in accounting for the ef-

fects of higher-order fluctuations by renormalizing the 𝑠-

wave coupling constants. For a binary boson mixture, the

ground-state energies obtained using our approach show

better agreement with the Monte Carlo (MC) simulation

results [19] compared to those derived from the extended

Gross-Pitaevskii equation (EGPE). [14] Similarly, for dipo-

lar quantum droplets, our predictions for quantum de-

pletion align more closely with MC results [20] than those

based on Bogoliubov theory. Furthermore, we also discuss

the implications of our theory.

2. Density-Functional Approach. We studied a multi-

component Bose gas, with its Hamiltonian expressed as:

𝐻 =

∫︁
𝑑𝑟

∑︁
𝜎

[︁
𝜓†

𝜎(𝑟)
(︁
− ~2∇2

2𝑚𝜎
+ 𝑉𝜎(𝑟)

)︁
𝜓𝜎(𝑟)

+
1

2

∫︁
𝑑𝑟′

∑︁
𝜎′

𝑈𝜎𝜎′(𝑟 − 𝑟′)𝜓†
𝜎(𝑟)𝜓

†
𝜎′(𝑟

′)𝜓𝜎′(𝑟′)𝜓𝜎(𝑟)
]︁
,

(1)

where 𝜓𝜎(𝑟) is the boson field operator for the

𝜎component, 𝑚𝜎 is the mass, 𝑉𝜎(𝑟) is the trap potential,

and 𝑈𝜎𝜎′(𝑟 − 𝑟′) represents the interaction between the

bosons. For a BEC ground state, the condensate wave-

function is given by 𝜓0𝜎(𝑟) = ⟨𝜓𝜎(𝑟)⟩ =
√︀
𝑛0𝜎(𝑟)𝑒

𝑖𝜑𝜎(𝑟),

where 𝑛0𝜎(𝑟) denotes the condensate density and 𝜑𝜎(𝑟)

denotes the condensate phase.

We considered the case where the temporal and spa-

tial scales of the variances are significantly larger than the

intrinsic scales of the system. Under these conditions, the
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local equilibrium assumption (LEA) can be applied, allow-

ing the system to be described by the effective action: [21]

𝑆Eff =

∫︁
𝑑𝑡

∫︁
𝑑𝑟

{︁
−

∑︁
𝜎

𝑛𝜎(𝑟)[~𝜕𝑡𝜑𝜎(𝑟) + 𝑉𝜎(𝑟)

+
~2

2𝑚𝜎

(︁ |∇𝑛𝜎(𝑟)|2

4𝑛2
𝜎(𝑟)

+ |∇𝜑𝜎(𝑟)|2
)︁]︁

− ℰI(𝑟)
}︁
, (2)

where 𝑛𝜎(𝑟) is the superfluid density, and ℰI is the

interaction-energy density of the lowest-energy uniform

state with the superfluid density 𝑛𝜎 and phase gradient

∇𝜑𝜎. In the effective action 𝑆Eff , there is no term involv-

ing the time derivative of the density. [22] From the effective

action 𝑆Eff , the superfluid hydrodynamic equations can be

derived. [21] In the ground state, the superfluid phase is uni-

form, 𝜑𝜎 = 0, and, for simplicity, the interaction energy

density ℰI can be expressed as the sum of two components:

ℰI = ℰMF+ℰC, where the mean-field energy density is given

by

ℰMF(𝑟) =
1

2

∫︁
𝑑𝑟′

∑︁
𝜎,𝜎′

𝑈𝜎𝜎′(𝑟 − 𝑟′)𝑛𝜎(𝑟)𝑛𝜎′(𝑟′). (3)

The correlation energy density ℰC, as a function of densi-

ties, arises from quantum fluctuations beyond the mean

field and should be determined self-consistently, as ex-

plained later in this section. The ground-state energy den-

sity, ℰ , is then given by ℰ = ℰK + ℰMF + ℰC, where the

kinetic and potential energy densities are given by

ℰK(𝑟) =
∑︁
𝜎

𝑛𝜎(𝑟)
(︁ ~2

2𝑚𝜎

|∇𝑛𝜎(𝑟)|2

4𝑛2
𝜎(𝑟)

+ 𝑉𝜎(𝑟)
)︁
. (4)

The superfluid-density distribution should satisfy the min-

imization condition of the ground-state energy, 𝐸 =
∫︀
𝑑𝑟ℰ :

−
~2∇2

√︀
𝑛𝜎(𝑟)

2𝑚𝜎

√︀
𝑛𝜎(𝑟)

+ 𝑉𝜎(𝑟) +

∫︁
𝑑𝑟′

∑︁
𝜎′

𝑈𝜎𝜎′(𝑟 − 𝑟′)𝑛𝜎′(𝑟′)

+
𝜕ℰC

𝜕𝑛𝜎
= 𝜇𝜎, (5)

where 𝜇𝜎 = 𝜕𝐸/𝜕𝑁𝜎 is the chemical potential and 𝑁𝜎 =

𝑛𝜎𝑉 is the boson number of the 𝜎 component. From

Eq. (5), the density distribution of a nonuniform system

can be determined in a manner analogous to solving the

EGPE.

The central task is to calculate the correlation energy

density ℰC. In the dilute region, a typical approach in-

volves analyzing Gaussian fluctuations around the con-

densate and studying the Bogoliubov Hamiltonian. How-

ever, for systems such as quantum droplets, where beyond-

mean-field effects play a critical role, this approach is insuf-

ficient, and the effects of higher-order fluctuations must be

considered. [16–18] Here, we propose that for a uniform sys-

tem, these significant fluctuation effects can be effectively

captured through Gaussian fluctuations derived from the

effective action in Eq. (2), as expressed by:

𝑆2 = −
∫︁
𝑑𝑡

∫︁
𝑑𝑟

∑︁
𝜎

{︁
𝛿𝑛𝜎(𝑟)~𝜕𝑡𝛿𝜑𝜎(𝑟)

+
~2

2𝑚𝜎

(︁⃒⃒⃒
∇𝛿𝑛𝜎(𝑟)

4𝑛𝜎

⃒⃒⃒2
+ 𝑛𝜎|∇𝛿𝜑𝜎(𝑟)|2

)︁
+

1

2

∫︁
𝑑𝑟′

∑︁
𝜎′

𝑈𝜎𝜎′(𝑟 − 𝑟′)𝛿𝑛𝜎(𝑟)𝛿𝑛𝜎′(𝑟′)

+
1

2

∑︁
𝜎′

𝜒𝜎𝜎′(𝑟)𝛿𝑛𝜎(𝑟)𝛿𝑛𝜎′(𝑟)
}︁
, (6)

where

𝜒𝜎𝜎′ =
𝜕2ℰC

𝜕𝑛𝜎𝜕𝑛𝜎′
. (7)

For the homogeneous system under consideration, only

the density and phase fluctuating fields, 𝛿𝑛 and 𝛿𝜑, ex-

hibit spatial dependence. Unlike the Bogoliubov theory,

in Eq. (6), the Gaussian fluctuations refer to the density

and phase fluctuations in the effective action, rather than

the fluctuations around the condensate. This approach ac-

counts for the crucial higher-order effects beyond the Bo-

goliubov theory. This renormalization of the Bogoliubov

theory is equivalent to a local correction to the 𝑠-wave cou-

pling constant, represented by 𝜒 in Eq. (7). For a uniform

system, the correlation energy can be determined by inte-

grating out the fluctuating fields 𝛿𝑛𝜎 and 𝛿𝜑𝜎 in the action

𝑆2, thus obtaining a self-consistent solution. Beyond the

dilute region, higher-order fluctuations in the effective ac-

tion should also be considered. In principle, the correlation

energy density can still be derived by integrating out all

fluctuating fields.

3. Implications on Quantum Droplets. Although the

quantum droplets we studied are in the dilute region, the

mean-field energy is very small and comparable to the LHY

energy. Therefore, it is crucial to properly determine the

correlation energy. In the following, we study the two

types of quantum droplets observed in experiments: the

binary boson mixture and the dipolar Bose gas.

3.1. Binary Boson Mixture. For a uniform binary bo-

son mixture with short-range interactions, the action 𝑆2 in

Eq. (6), which describes Gaussian fluctuations, is equiva-

lent to a renormalized Bogoliubov Hamiltonian, given by

𝐻Eff =
∑︁
𝑘,𝜎

𝜖𝑘𝑎
†
𝑘𝜎𝑎𝑘𝜎 +

∑︁
𝑘,𝜎,𝜎′

𝑔′𝜎𝜎′
√
𝑛𝜎𝑛𝜎′

·
[︁
𝑎†
𝑘𝜎𝑎𝑘𝜎′ +

1

2
(𝑎𝑘𝜎𝑎−𝑘𝜎′ +H.C.)

]︁
, (8)

where 𝜖𝑘 = ~2𝑘2/2𝑚, 𝑎𝑘𝜎 is the boson annihilation opera-

tor, 𝑔′𝜎𝜎′ = 𝑔𝜎𝜎′ + 𝜒𝜎𝜎′ , and 𝑔𝜎𝜎′ is the coupling constant

between 𝜎- and 𝜎′-components. This effective Hamiltonian

can first be written as the Hamiltonian of two independent

single-species systems through a canonical transformation:

𝐻Eff =
∑︁
𝑘,𝜆

[︁
(𝜖𝑘 + 𝜀𝜆)𝑏

†
𝑘𝜆𝑏𝑘𝜆 +

1

2
𝜀𝜆(𝑏𝑘𝜆𝑏−𝑘𝜆 +H.C)

]︁
, (9)

where 𝜀± are eigenvalues of matrix 𝑀𝜎𝜎′ = 𝑔′𝜎𝜎′
√
𝑛𝜎𝑛𝜎′ ,

𝜀± =
1

2

[︁
𝑔′11𝑛1 + 𝑔′22𝑛2 ±

√︁
(𝑔′11𝑛1 − 𝑔′22𝑛2)2 + 4𝑔

′2
12𝑛1𝑛2

]︁
,
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𝜆 = ±, 𝑏𝑘𝜆 =
∑︀

𝜎 𝑢𝜆𝜎𝑎𝑘𝜎, and 𝑢𝜆𝜎 is the normalized eigen-

vector of matrix 𝑀𝜎𝜎′ . From Eq. (9), two types of excita-

tion can be obtained from this Hamiltonian: phonon and

magnon,

𝐸𝑘𝜆 =
√︀
𝜖𝑘(𝜖𝑘 + 2𝜀𝜆). (10)

Both energies exhibit linear dispersion in the long-

wavelength limit, with the phonon speed 𝑐− and the

magnon speed 𝑐+

𝑐± =

√︂
𝜀𝜆
𝑚
. (11)

In this case, the correlation energy corresponds to the

renormalized LHY energy, as given by Ref. [23], and can

be expressed in terms of these two speeds from Eq. (9),

similar to the approach in the Bogoliubov theory:

ℰC =
8𝑚4

15𝜋2~3
(𝑐5+ + 𝑐5−). (12)

Speed 𝑐± can be solved using Eqs. (12) and (7). For

a dilute binary quantum droplet, where 𝑐+ ≫ 𝑐− and

|𝑔𝜎𝜎′ | ≫ |𝜒𝜎𝜎′ |, the correlation energy, to leading order,

is given by the LHY energy as presented in Ref. [14],

ℰC ≈
√
2𝑚3

15𝜋2~3
(𝑔11𝑛1 + 𝑔22𝑛2

+
√︁

(𝑔11𝑛1 − 𝑔22𝑛2)2 + 4𝑔212𝑛1𝑛2)
5/2. (13)

The second derivatives of 𝜒𝜎𝜎′ can be computed, yielding a

positive phonon speed, in agreement with the results from

the Beliaev theory [16] and the path-integral approach. [17]

This is also consistent with the results of Ref. [24], where

the phonon speed was obtained from the hydrodynami-

cal relation by considering only the real part of the LHY

energy in the ground-state energy.

From Eq. (13), the equation of state for 𝑔22 = 𝑔11 is

given by:

𝐸

𝑁
=

(ℰMF + ℰC)𝑉

𝑁

=
~2𝜋(𝑎11 + 𝑎12)𝑛

𝑚
+

32
√
2𝜋~2𝑎5/211

15𝑚

(︁
1− 𝑎12

𝑎11

)︁ 5
2
𝑛

3
2 ,

(14)

where 𝑎𝜎𝜎′ =
𝑚𝑔𝜎𝜎′
4𝜋~2 is the 𝑠-wave scattering length, 𝑛 =

𝑁/𝑉 is the density, and 𝑁 is the total particle number. In

Fig. 1, we present the results obtained using Eq. (14) for

different values of the interspecies scattering length 𝑎12
and compare them with the Monte Carlo (MC) equations

of state [19] and the MF+LHY prediction. [14] In Ref. [14],

to avoid the existence of imaginary parts in the LHY en-

ergy, |𝑎12| is approximated as 𝑎11. The density-functional

equations of state from Eq. (14) do not contain imaginary

parts and are in close agreement with the MC results, par-

ticularly in the region where the density is lower than the

equilibrium density. When |𝑎12| deviates from 𝑎11, for

𝑛𝑎311 < 2 × 10−4, our results agree well with the MC re-

sults, as shown in Figs. 1(a) and 1(b). At larger densities,

our results start to deviate from the MC data, probably

due to the higher-order effects neglected in our approach.
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Fig. 1. For the binary boson mixture droplet, [19] we compared the equations of state predicted by our density-

functional theory, the MF+LHY approximation with |𝑎12| = 𝑎11, [14] and MC results for different values of the

interspecies scattering length 𝑎12. The green dots represent the MC results, [19] the blue line shows our results from

Eq. (14), and the red line depicts the MF+LHY prediction with |𝑎12| = 𝑎11, as done in Ref. [14]. The definitions of

energy units 𝐸0 and density units 𝑛0 are consistent with those used in Ref. [19].

The equation of state for the pairing state also showed

good agreement with the MC results. [25–28] There are cru-

cial differences in the excitation spectra between the BEC

state and the pairing state, which can be used to deter-

mine the true ground state. In the BEC state of a binary

mixture, both phonon and magnon excitations are gapless.

In contrast, in the pairing state, the magnon excitation is

gapped, while the phonon mode remains gapless. Some

higher-order corrections can also be obtained by utilizing

the thermodynamic relation for compressibility, while ig-

noring the imaginary components in the compressibility

and energy due to fluctuations in the density channel. [24]

In contrast, within the framework of the density-functional

theory, both density and phase fluctuations are treated

self-consistently, and the correlation energy can be ob-

tained without the problem of imaginary components in

the LHY energy.

3.2. Dipolar Bose Gas. For a dilute uniform dipo-

lar Bose gas with all dipoles aligned along the 𝑧-direction,

the renormalized Bogoliubov Hamiltonian corresponding

to the quadratic action 𝑆2 is given by

𝐻Eff =
∑︁
𝑘

[︁
(𝜖𝑘+𝑈

′(𝑘)𝑛)𝑎†
𝑘𝑎𝑘+

1

2
𝑈 ′(𝑘)𝑛(𝑎𝑘𝑎−𝑘+H.C.)

]︁
,

(15)

where 𝑈 ′(𝑘) = 𝑈(𝑘) +𝜒, 𝑈(𝑘) = 𝑔[1 + 𝜖𝑑𝑑(3 cos
2 𝜑𝑘 − 1)],

𝑔 is the s-wave coupling constant, 𝜖𝑑𝑑 is the strength of

the dipole-dipole interaction, and 𝜑𝑘 is the angle between
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𝑘 and the 𝑧-axis. The correlation energy is given by [29,30]

ℰC =
64

15
√
𝜋
𝑔′𝑛2

√
𝑛𝑎′3𝑄5(𝜖

′
𝑑𝑑), (16)

where 𝑔′ = 𝑔 + 𝜒, 𝜖′𝑑𝑑 = 𝑔𝜖𝑑𝑑/𝑔
′, 𝑎′ = 𝑚𝑔′/(4𝜋~2),

𝑄5(𝑥) =
(3𝑥)5/2

48

[︁
(8 + 26𝑦 + 33𝑦2)

√︀
1 + 𝑦

+ 15𝑦3 ln
1 +

√
1 + 𝑦

√
𝑦

]︁
,

and 𝑦 = (1 − 𝑥)/3𝑥. 𝜒 as a function of the density can

be solved self-consistently using Eq. (16) and (17). In the

dilute limit, 𝑔′ ≈ 𝑔, the correlation energy is given by the

LHY energy:

ℰC ≈ 64

15
√
𝜋
𝑔𝑛2

√
𝑛𝑎3𝑄5(𝜖𝑑𝑑), (17)

where 𝑎 = 𝑚𝑔/(4𝜋~2). The effective correction to the 𝑠-

wave coupling constant is approximately given by:

𝜒 ≈ 16√
𝜋
𝑔
√
𝑛𝑎3𝑄5(𝜖𝑑𝑑), (18)

as found in Ref. [18].

For a quantum droplet, where 𝜖𝑑𝑑 > 1, the function

𝑄5(𝜖𝑑𝑑) has a small imaginary part, which is neglected in

the EGPE. [15,31] However, in our approach, the imaginary

energy problem is avoided from the outset. From Eq. (16),

we obtain:

𝑑ℰC

𝑑𝑛
=

32

3
√
𝜋
𝑔′
√
𝑛𝑎′3𝑄5(𝜖

′
𝑑𝑑) +

64

15
√
𝜋
𝑔′𝑛2

√
𝑛𝑎′3

·
[︁ 5

2𝑔′
𝑑𝑔′

𝑑𝑛
𝑄5(𝜖

′
𝑑𝑑) +𝑄′

5(𝜖
′
𝑑𝑑)

𝑑𝜖′𝑑𝑑
𝑑𝑛

]︁
, (19)

where 𝑄′
5(𝑥) = 𝑑𝑄5(𝑥)/𝑑𝑥. In the dilute region, the den-

sity dependence of 𝑔′ and 𝜖′𝑑𝑑 is weak, and Eq. (19) can be

approximated as

𝑑ℰC

𝑑𝑛
≈ 32

3
√
𝜋
𝑔𝑛

√
𝑛𝑎3𝑄5(𝜖

′
𝑑𝑑). (20)

Similarly, from Eq. (7), the correction to the 𝑠-wave cou-

pling constant is approximately given by

𝜒 =
𝑑2ℰC

𝑑𝑛2
≈ 16√

𝜋
𝑔
√
𝑛𝑎3𝑄5(𝜖

′
𝑑𝑑). (21)

Thus, the renormalized 𝑠-wave coupling constant 𝑔′ can be

obtained self-consistently as follows:

𝑔′ = 𝑔 +
16√
𝜋
𝑔
√
𝑛𝑎3𝑄5(𝜖

′
𝑑𝑑). (22)

As described in Ref. [18], the renormalized parameter 𝜖′𝑑𝑑
is less than one, and the imaginary-energy problem is arti-

ficial. Here, we verify the accuracy of this approximation

by computing the quantum depletion fraction and compar-

ing it with the MC results. [20] For a uniform dipolar Bose

gas with density 𝑛, in Bogoliubov theory, the quantum

depletion fraction is given by: [30]

𝑓B
𝑑 =

8

3

√︀
𝑛𝑎3/𝜋𝑄3(𝜖𝑑𝑑), (23)

where

𝑄3(𝑥) =
(3𝑥)3/2

8

[︁
(2 + 5𝑦)

√︀
1 + 𝑦 + 3𝑦2 ln

1 +
√
1 + 𝑦

√
𝑦

]︁
,

𝑦 =
(1− 𝑥)

3𝑥
.

Using the renormalized 𝑠-wave coupling constant 𝑔′, we

obtain the corrected quantum depletion fraction as

𝑓𝑐
𝑑 =

8

3

√︀
𝑛𝑎′3/𝜋𝑄3(𝜖

′
𝑑𝑑). (24)

In Fig. 2(a), we compare the corrected depletion fraction

𝑓𝑐
𝑑 with those from the MC calculation results [20] and the

Bogoliubov theory. Our results are consistent with the MC

results, particularly in the region with a larger quantum

depletion fraction, and both deviate from the Bogoliubov

theory as the density increases. This suggests that dipo-

lar quantum droplets have stronger quantum fluctuations

than those described by the Gaussian fluctuations in the

Bogoliubov theory.
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Fig. 2. For the uniform system with parameters from the
162Dy droplet, [20] (a) the depletion fraction as predicted by

our density-functional theory, MC results, and the Bogoli-

ubov theory, for a scattering length of 𝑎 = 60𝑎0. The green

dots represent the MC results, [20] the blue line shows our

results obtained using Eq. (24), and the red line shows the

Bogoliubov theory results from Eq. (23). (b)𝑔′/𝑔 as a func-

tion of the density for 𝜖𝑑𝑑 = 1.2, 𝑎 = 107.5𝑎0 (dashed line)

and 𝑎 = 60𝑎0 (solid line).

For dipolar Bose gases, the excitation energy in Bo-

goliubov theory is given by

𝜖B =
√︀
𝜖𝑘(2𝑛𝑈(𝑘) + 𝜖𝑘). (25)

In the quantum-droplet region, where the strength of the

dipole-dipole interaction 𝜖𝑑𝑑 > 1, there is an imaginary

part in the excitation energy for 𝜑𝑘 = 𝜋/2, implying dy-

namical instability. In our density-functional theory, the

renormalized strength of the dipole-dipole interaction 𝜖′𝑑𝑑
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can still be less than one, thereby stabilizing the excitation

spectrum, which is given by

𝜖′B =
√︀
𝜖𝑘(2𝑛𝑈 ′(𝑘) + 𝜖𝑘). (26)

In Fig. 3, we show the stable region of the renormalized

excitation spectrum for different droplet densities and 𝜖𝑑𝑑.
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Fig. 3. For the uniform system with parameters from

the 162Dy droplet, [20] the blue line in (a) shows the sta-

ble boundary of the excitation spectrum predicted by our

density-functional theory, and the red line in (b) shows the

stable boundary of the excitation spectrum predicted by Bo-

goliubov theory.

In the experiments, the systems are non-uniform with

finite sizes. The dynamical instability occurs when the

ground state becomes degenerate with the first excita-

tion state. [32] Nonetheless, the energy density of a uniform

system is important for the theoretical treatment of non-

uniform systems, such as in the EGPE and a recent MC

study based on density functional theory. [33]

Our approach can also be extended to a dilute binary

dipolar Bose gas, with an effective quadratic Hamiltonian

given by

𝐻Eff =
∑︁
𝑘𝜎

𝜖𝑘𝑎
†
𝑘𝜎𝑎𝑘𝜎 +

∑︁
𝑘,𝜎,𝜎′

𝑈 ′
𝜎𝜎′(𝑘)

√
𝑛𝜎𝑛𝜎′

·
[︁
𝑎†
𝑘𝜎𝑎𝑘𝜎′ +

1

2
(𝑎𝑘𝜎𝑎−𝑘𝜎′ +H.C.)

]︁
, (27)

where 𝑈 ′
𝜎𝜎′(𝑘) = 𝑈𝜎𝜎′(𝑘) + 𝜒𝜎𝜎′ , 𝑈𝜎𝜎′(𝑘) = 𝑔𝑠𝜎𝜎′ +

𝑔𝑑𝜎𝜎′(3 cos2 𝜑𝑘 − 1)], 𝑔𝑠𝜎𝜎′ and 𝑔𝑑𝜎𝜎′ are the coupling con-

stants of the 𝑠-wave and dipolar interactions. In a uniform

state, the correlation energy can be obtained from this ef-

fective Hamiltonian in the same manner as described in

Ref. [12], except that there is now a correction, 𝜒𝜎𝜎′ , to

the 𝑠-wave coupling constant, which can be determined

self-consistently as shown in Eq. (7). The correlation en-

ergy density is given by [12]

ℰC =

√
2𝑚3/2

15𝜋2~3
∑︁
±

∫︁ 𝜋/2

0

𝑑𝜃𝑘 sin 𝜃𝑘𝐼
5/2
± (𝑘), (28)

where

𝐼±(𝑘) = 𝑛1𝑈
′
11(𝑘) + 𝑛2𝑈

′
22(𝑘)±

√︁
Δ2(𝑘) + 4𝑛1𝑛2𝑈

′2
12(𝑘),

(29)

Δ(𝑘) = 𝑛1𝑈
′
11(𝑘)− 𝑛2𝑈

′
22(𝑘). Thus, the correction to the

𝑠-wave coupling constant can be obtained as:

𝜒𝜎𝜎′ =

√
2𝑚3/2

6𝜋2~3
∑︁
±

∫︁ 𝜋/2

0

𝑑𝜃𝑘 sin 𝜃𝑘

· 𝐼1/2± (𝑘)
[︁3
2
𝐼±𝜎(𝑘)𝐼±𝜎′(𝑘)+𝐼±(𝑘)𝐼±𝜎𝜎′(𝑘)

]︁
, (30)

where

𝐼±𝜎(𝑘) =
𝜕𝐼±(𝑘)

𝜕𝑛𝜎

≈ 𝑈 ′
𝜎𝜎(𝑘)±

(−1)�̄�Δ(𝑘)𝑈 ′
𝜎𝜎(𝑘) + 2𝑛�̄�𝑈

′2
12(𝑘)√︀

Δ2(𝑘) + 4𝑛1𝑛2𝑈
′2
12(𝑘)

,

(31)

𝐼±𝜎𝜎′(𝑘) =
𝜕𝐼±𝜎(𝑘)

𝜕𝑛𝜎′
≈ ∓

{︃
[((−1)�̄�Δ(𝑘)𝑈 ′

𝜎𝜎(𝑘) + 2𝑛�̄�𝑈
′2
12(𝑘))((−1)𝜎

′
Δ(𝑘)𝑈 ′

𝜎′𝜎′(𝑘) + 2𝑛𝜎′𝑈
′2
12(𝑘))]

[Δ2(𝑘) + 4𝑛1𝑛2𝑈
′2
12(𝑘)]

3/2

− (−1)�̄�+𝜎′
𝑈 ′

𝜎′𝜎′(𝑘)𝑈 ′
𝜎𝜎(𝑘) + 2𝛿𝜎′�̄�𝑈

′2
12(𝑘)√︀

Δ2(𝑘) + 4𝑛1𝑛2𝑈
′2
12(𝑘)

}︃
, (32)

�̄� labels the component different from 𝜎, 1̄ = 2, 2̄ = 1.

As done previously, the density dependence of 𝑔′𝜎𝜎′ is ne-

glected. From Eq. (30), the correction to the 𝑠-wave cou-

pling constant 𝜒𝜎𝜎′ can be solved, and other renormalized

physical quantities can be obtained thereafter.

4. Discussion. It is worth mentioning that den-

sity functional theory was used to study 4He droplets [34],

where the interaction parameters were treated phenomeno-

logically. In the density functional theory of quantum

droplets, quantum fluctuations renormalize s-wave cou-

pling constants, which can be determined self-consistently

in the dilute region. The results from our approach are

consistent with those of the EGPE but do not suffer from

the imaginary-energy problem. Our results for the ground-

state energy and the quantum depletion fractions agree

with the MC results. For systems with significant quan-

tum depletion, our approach should be superior because it

treats quantum fluctuations self-consistently.
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