
Chinese Physics Letters 42, 010301 (2025)

Parameters Optimization of Decoy-State Phase-Matching Quantum Key

Distribution Based on the Nature-Inspired Algorithms

Chang Liu(刘畅), Yue Li(李悦), Haoyang Wang(王浩洋), Kaiyi Shi(石开毅),

Duo Ma(马铎), Yujia Zhang(张育嘉) and Haiqiang Ma(马海强)*

State Key Laboratory of Information Photonics and Optical Communications, School of Science,

Beijing University of Posts and Telecommunications, Beijing 100876, China

(Received 14 September 2024; accepted manuscript online 9 December 2024)

Phase-matching quantum-key distribution (PM-QKD) has achieved significant results in various practical

applications. However, real-time communication requires dynamic adjustment and optimization of key parameters

during communication. In this letter, we predict the PM-QKD parameters using nature-inspired algorithms

(NIAs). The results are obtained from an exhaustive traversal algorithm (ETA), which serves as a benchmark.

We mainly study the parameter optimization effects of the two NIAs: ant colony optimization (ACO) and the

genetic algorithm (GA). The configuration of the inherent parameters of these algorithms in the decoy-state

PM-QKD is also discussed. The simulation results indicate that the parameters obtained by the ACO exhibit

superior convergence and stability, whereas the GA results are relatively scattered. Nevertheless, more than 97%

of the key rates predicted by both algorithms are highly consistent with the optimal key rate. Moreover, the

relative error of the key rates remained below 10%. Furthermore, NIAs maintain power consumption below 8W

and require three orders of magnitude less computing time than ETA.
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1. Introduction. Quantum key distribution (QKD) is

based on the principles of quantum mechanics, [1] which

allow the unconditional and secure sharing of keys be-

tween trusted communication parties without limiting

the computing power of potential eavesdroppers. The

BB84-QKD protocol lays the foundation for the develop-

ment of QKD. [2] Various protocols have been proposed

over the past 40 years. Among them, the decoy-state-

QKD protocol addresses the problem of multiphoton se-

curity vulnerability at the source side in practical QKD

systems. [3] The measurement-device-independent QKD

(MDI-QKD) protocol is designed to withstand all at-

tacks against the detector side, [4,5] such as time-shift

attacks, [6,7] faked states attacks, [8,9] and detector blinding

attacks. [10,11] However, all these protocols share a com-

mon challenge: the key rate cannot exceed the Pirandola-

Laurenza-Ottaviani-Banchi (PLOB) bound without the

use of a quantum repeater. [12,13] The twin-field QKD

(TF-QKD) protocol, proposed by Lucamarini et al., ad-

dresses this limitation. [14] Based on the principle of single-

photon interference, the security key rate of TF-QKD is

proportional to the square root of the transmittance of

the channel. This feature is particularly critical in long-

distance communication scenarios, significantly extending

the effective coding distance and demonstrating signifi-

cant advantages over traditional MDI-QKD. However, a

later announcement of the phase information in TF-QKD

causes security loopholes, and many variants of TF-QKD

have been proposed to close these loopholes. Among

them, decoy-state phase-matching QKD (PM-QKD) offers

a quadratic improvement in the key rate without requir-

ing basic selection. It eliminates the requirement for phase

locking or pre-phase feedback, thereby obviating the need

for a phase post-compensation technique. [15]

With the deepening of QKD theory research, its prac-

tical application has made remarkable progress, including

constructing large-scale intercity QKD networks and real-

izing space-to-ground integrated QKD systems. [16–21] Nev-

ertheless, the deployment of decoy-state PM-QKD in prac-

tical settings inevitably confronts multifaceted challenges

such as encompassing electromagnetic interference, [22]

light source defects, [23] and environmental noise [24]. These

factors directly affect the key rate of the decoy-state PM-

QKD, which may endanger the security and efficiency of

communication. To address these challenges, optimizing

the parameter settings of the decoy-state PM-QKD proto-

col is crucial to reducing the impact of external interference

on system performance through precise adjustments. Tra-

ditionally, parameter optimization has adopted exhaustive

traversal algorithms (ETA) and local search algorithms

(LSA). [25] Although these methods can obtain the opti-

mal parameter values, their optimization process is time-

consuming and fails to meet the high real-time demands

of modern communication systems. Therefore, exploring

and developing more efficient and fast parameter optimiza-

tion algorithms is necessary to ensure that the decoy-state

PM-QKD system can maintain stable performance and ef-

ficient security key generation ability in various application
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scenarios.

Nature-inspired algorithms (NIAs) are a class of algo-

rithms designed to draw inspiration from natural biological

phenomena and patterns. [26,27] These algorithms embody

the survival strategies, group behaviors, and evolution-

ary mechanisms of organisms in nature. They are known

for their adaptive distributed computation and powerful

global search capabilities. Over the past few decades, NIAs

such as ant colony optimization (ACO) and genetic algo-

rithm (GA), [28–31] have been widely applied to solve the

problem of optimal parameter setting. [32–34] These algo-

rithms can efficiently explore the entire solution space with

a certain probability within a specified range, ultimately

identifying the optimal solution owing to their inherent

characteristics. Importantly, these approaches do not al-

ter the fundamental principles or underlying logic of QKD

protocols, making them suitable for various QKD proto-

cols, including subsequent variants of TF-QKD and MP-

QKD. [4,35–38]

In this letter, we study the effects of ACO and GA on

parameter optimization in decoy-state PM-QKD. ACO is

commonly used to solve the traveling salesman problem

(TSP), [39] with its pheromone renewal strategy typically

associated with the distances between cities. In QKD pa-

rameter optimization, we consider the key rate to be a

crucial metric in the pheromone update strategy. To com-

prehensively evaluate the performance of these two algo-

rithms in decoy-state PM-QKD parameter optimization,

we conduct a comparative analysis of three key dimen-

sions: the accuracy of the parameter prediction, size of

the relative error value of the key rate, and computational

cost. The results show that both NIAs perform well across

all three categories. Moreover, the parameters predicted

by the ACO demonstrate greater accuracy.

2. Decoy-State PM-QKD. Alice and Bob each gener-

ate a coherent state |
√
𝑠𝑒𝑖(𝜑A(B)+𝜋𝜅A(B))⟩A(B), where 𝜅A(B)

denotes the random key, 𝜑A(B) denotes the random phase,

and 𝑠 ∈ {𝜇, 𝜈, 𝜔} denotes the random intensity (𝜇, 𝜈, 𝜔 rep-

resent the signal state, decoy state, and vacuum state, re-

spectively). Alice and Bob then send the modulated pulses

to an untrusted third party, Eve, who conducts the inter-

ferometry and records the responses from the detectors.

After Eve announces the detection results, Alice and Bob

announce the phase slice index where the random phase is

located and sift the key based on Eve’s published detection

success events (noticing that only one of the two detectors

responded). Finally, a secure key is extracted from the fil-

tered bits through key extraction, parameter estimation,

and postprocessing.

Using Gottesman, Lo, Lütkenhaus and Preskill

(GLLP) theory, [40] the gain obtained is as follows:

𝑄𝑠 = 1− 𝑒−𝑠𝜂d𝜂 + 2𝑃dc𝑒
−𝑠𝜂d𝜂, 𝑠 ∈ {𝜇, 𝜈, 𝜔}, (1)

where 𝑃dc denotes the dark count rate, 𝜂d denotes the de-

tection efficiency of the detector and 𝜂 = 10−𝛼𝐿/20 with

𝛼 and 𝐿 denoting the fiber loss factor and transmission

distance, respectively.

The quantum bit error rate (QBER) in the 𝑍 basis is

as follows:

𝐸𝑍
𝑠 =

(𝑃dc + 𝑠𝜂d𝜂𝑒𝛿)𝑒
−𝑠𝜂d𝜂

𝑄𝑠
, (2)

where 𝑒𝛿 denotes the misalignment error rate.

The phase-error rate is [41]

𝐸𝑋
𝜇 = 𝑞1𝑒

𝑍
1 + 𝑞0 + 𝑒𝑍0 + (1− 𝑞0 − 𝑞1), (3)

where 𝑞𝑘 represents the ratio of the 𝑘photon signal to fully

detected signal, and 𝑒𝑍𝑘 represents the quantum bit error

rate of the 𝑘-photon signal.

In Eq. (3), the upper bound of the single-photon signal

error is as follows:

𝑒𝑍1 =
𝐸𝑍

𝜈 𝑄𝜈𝑒
𝜈 − 𝐸𝑍

𝜔𝑄𝜔𝑒
𝜔

(𝜈 − 𝜔)𝑌1
, (4)

where 𝑌1 denotes the single-photon yield.

The key rate of decoy-state PM-QKD in the asymp-

totic scenario is:

𝑅 =
2

𝑀
𝑄𝜇[1− 𝑓𝐻(𝐸𝑍

𝜇 )−𝐻(𝐸𝑋
𝜇 )], (5)

where 𝑀 denotes the number of slices, 𝑓 denotes the error

correction efficiency, and 𝐻(𝑥) denotes the binary entropy,

expressed as 𝐻(𝑥) = −𝑥log2(𝑥)− (1− 𝑥)log2(1− 𝑥).

From the above analysis, it is evident that inherent sta-

tistical fluctuations in the observed values must be consid-

ered when employing decoy state analysis to estimate the

contribution of a single photon. Consequently, selecting an

appropriate strength value to optimize key rate generation

is essential. Here, we mainly optimize 𝜇 and 𝜈, which are

constrained to lie within the range of [0.01, 1], under the

condition that 𝜇 > 𝜈 and 𝜔 = 0. Subsequently, ACO and

GA are employed to search for the optimal solution within

this range using their respective computational techniques.

The principles underlying these methods are as follows.

3. ACO and GA. ACO, a metaheuristic algorithm in-

spired by the foraging behavior of ants, has demonstrated

remarkable effectiveness in solving complex optimization

problems. This fundamental concept is based on the effi-

cient collective intelligence exhibited by ants when locating

food sources. Particularly the route selection mechanisms

and information transmission through releasing and de-

tecting pheromones. Australian scholars Marco Dorigo et

al. proposed an ACO algorithm based precisely on the

foraging behavior of ants. [29] Subsequently, the ant cy-

cle, quantity, and density systems were derived according

to the characteristics of releasing pheromones Δ𝜏 , among

which the most commonly used is the ant cycle system.

Now, we utilize the concept of the ant cycle system (i.e.,

ants release pheromones after only one cycle) and combine

it with the characteristics of the decoy-state PM-QKD pro-

tocol to obtain Δ𝜏 = 𝑅TF−QKD. The specific solution pro-

cess for ACO is shown in Fig. 1. The key steps of the ACO

are as follows:

(1) Updated pheromone concentrations

𝜏𝑖(iter + 1) = 𝜏𝑖(iter)× (1− 𝜌) + Δ𝜏𝑖(iter), (6)

where the subscript 𝑖 represents the 𝑖th ant, and iter de-

notes the number of iterations; 𝜏 denotes the pheromone

concentration correspondingly; 𝜌 denotes the pheromone
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volatilization factor; Δ𝜏 is the value of the fitness func-

tion, which is denoted as 𝑅TF−QKD.

(2) State transfer probability

𝑃𝑖(iter) = (𝜏best(iter)− 𝜏𝑖(iter))/𝜏best(iter), (7)

where 𝑃 denotes the state transfer probability and 𝜏best
denotes the maximum pheromone concentration.

𝑋𝑖(iter + 1)

=

{︃
𝑋𝑖(iter) + (2×rand− 1)/max iter 𝑃𝑖(iter) < 𝑃0,

𝑋𝑖(iter) + (Up− Low)×(rand− 0.5) 𝑃𝑖(iter) > 𝑃0,

(8)

where 𝑋 indicates the positional coordinates of the ant,

rand denotes a pseudo-random number between 0 and

1, Up and Low are the upper and lower bounds of the

ant’s coordinates, respectively, and 𝑃0 denotes the trans-

fer probability constant.

Initialization parameters

Start

Define the fitness function 

Generate several optimized solutions

Generating the initial distribution of pheromones

Update adaptation

Update pheromones

 

Output optimal adaptation

End

Global searchLocal search

Yes

No

NoYes

Is iter > max-iter?

P <P0?

Fig. 1. Flowchart of the ACO.

Concurrently, we combine the GA with decoy-state

PM-QKD to study its optimization performance. The

following is a brief introduction to this principle. John

Holland originally proposed the GA as a heuristic solu-

tion search or optimization technique based on the natu-

ral selection of Darwin’s biological evolution theory and

the biological evolution process of genetic mechanisms. [31]

Holland’s schema theorem and the related building block

hypothesis provide the theoretical and conceptual founda-

tion for the design of an efficient GA. In GA, each solution

instance is regarded as an “individual”, and the entire solu-

tion space forms a “population”. Each individual is repre-

sented by a “chromosome”, in which binary numbers typi-

cally represent the information on the chromosome. Then,

a fitness-based selection and recombination process is per-

formed to generate a subsequent population, that is, the

next generation. As the population iterates, fitness con-

tinuously improves until the optimal solution is reached.

Its core steps include selection, crossover [as shown in

Fig. 2(a)], and mutation [as shown in Fig. 2(b)]. [31]

1 1 0 1 0 0 1 1

1 0 1 1 1 0 1 1 0 1 0 0 1 1

1 1 0 1 1 1 0 1

1 1 0 1 0 0 11 1 1 0 1 1 0 11

0 0

(a)

(b)

Fig. 2. Crossover and mutation processes of GA. (a) Single-

point crossover process. According to a certain crossover

probability, two-parent individuals select a crossover point

on their chromosomes. Subsequently, they produce two new

offspring by exchanging gene segments. (b) Mutation pro-

cess. Certain individual loci with a specific probability of

mutation are selected. Subsequently, the values of these loci

are altered, which may involve changes in the locus value

from 0 to 1 or from 1 to 0.

4. Numerical Simulation. Considering the impact of

the algorithm’s internal parameters on the computational

performance, we analyzed the simulation results under dif-

ferent parameter combinations and selected the optimal in-

ternal parameter configuration accordingly. In this study,

we regarded the prediction results obtained by the ETA

as the optimal values. We selected 145,800 data sets with

channel distances within 600 km to carefully study the pa-

rameters listed in Table 1. Simultaneously, the standard

deviations of 𝜇 and 𝜈 were calculated for each parameter

combination, which were used as indicators to evaluate the

proximity between the predicted and optimal results.

The data analysis shows that after selecting the pa-

rameter 𝑠1 in the ACO, the maximum difference in the

standard deviation across various combinations of 𝜌 and

𝑃0 is 0.0027. This finding underscores the high robustness

of the ACO with respect to 𝜌 and 𝑃0. However, as 𝑠1
increased, the standard deviation decreased, whereas the

running time increased significantly. By contrast, the GA

was less sensitive to the parameters 𝑠2 and 𝑃c, yielding sat-

isfactory results when 𝑠2 > 20. Specifically, when 𝑃c and

𝑃m are fixed, increasing 𝑠2 from 20 to 300 decreased the

standard deviation by only 8.2%. It is important to note

that the GA is highly sensitive to variations in the param-

eter 𝑃m, and reducing the probability of variation can sig-

nificantly enhance the accuracy of the results. Therefore,

after considering key factors such as running time, power

consumption, and accuracy, we opted for a trade-off, sac-

rificing accuracy to optimize the overall performance. The

selected parameters are presented in Table 2.
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Table 1. The inherent parameters and the test range. 𝑠1, 𝜌, and 𝑃0 represent the population number, pheromone

volatilization factor, and the ACO transfer probability constant, respectively. 𝑠2, 𝑃c, and 𝑃m represent the popu-

lation size, crossover probability, and mutation probability of the GA, respectively.

Inherent parameters 𝑠1 𝜌 𝑃0 𝑠2 𝑃c 𝑃m

Test range [10, 300] [0.1, 0.9] [0.1, 0.9] [10, 300] [0.1, 0.9] [0.1, 0.9]

Table 2. Inherent parameters of ACO and GA.

Inherent parameters 𝑠1 𝜌 𝑃0 𝑠2 𝑃c 𝑃m

Value 70 0.8 0.2 20 0.8 0.1

Table 3. Simulation parameters.

Parameters 𝑓 𝑀 𝛼 𝑃dc 𝜂d

Value 1.15 16 0.2 8× 10−8 0.145

Table 4. Comparison of the computational cost by ACO,

GA, and ETA.

Time (s) CPU (%) Power consumption (W)

ACO 32.54 10% < 8

GA 34.11 10% < 8

ETA 13835.93 11% 1000

After selecting the inherent parameters of the algo-

rithms, we predicted the decoy-state PM-QKD parame-

ters. The decoy-state PM-QKD system parameters are

listed in Table 3. Initially, we compared the computa-

tional costs of the three algorithms (CPU: 13th Gen In-

tel(R) Core(TM) i7-13700 @ 2.10GHz; RAM: 16.0GB),

as shown in Table 4. NIAs take approximately 33 s, which

is three orders of magnitude shorter than the ETA. In ad-

dition, NIAs consume less power, allowing them to save on

electricity costs in the long run.

Figure 3 shows the prediction performance of ACO and

the GA for parameter 𝜇 under different distance condi-

tions. The results indicate that the predicted values gen-

erated by ACO were closely aligned with the optimal pre-

dicted values. In addition, the data points are tightly

clustered around the optimal value, demonstrating high

consistency and accuracy. In contrast, although the pre-

dicted values from the GA also exhibited a trend similar

to the optimal values, some data points were widely dis-

persed, indicating significant variability. This discrepancy

is particularly evident for longer distances. Figure 4 fur-

ther highlights the prediction performance of the two algo-

rithms for the parameter 𝜈 at different distances, revealing

that the values predicted by the GA exhibit greater dis-

persion. In summary, ACO clearly outperformed the GA

regarding parameter prediction accuracy.

Additionally, given the significance of the key rate in

evaluating protocol quality, we conducted a specific anal-

ysis of the key rate calculated by these two algorithms to

assess their effectiveness and impact in practical applica-

tions comprehensively. Comparing the data accuracy of

the algorithms, ACO showed remarkable superiority. The

experimental results are shown in Fig. 5, where 98.7% of

the ACO calculation results fall within the 10% relative er-

ror range. By contrast, the GA achieved a data accuracy of

97.6%. Although its numerical results are good, the ACO

clearly offers greater advantages in scenarios that demand

higher accuracy.
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Fig. 3. Comparison of the performance of GA and ACO in

predicting 𝜇. The green and blue dots represent 𝜇 obtained

by GA and ACO, respectively, whereas the red dots denote

the optimal 𝜇 obtained by ETA.
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the optimal 𝜈 obtained by ETA.
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5. Conclusion. In this study, the parameter optimiza-

tion strategy of a decoy-state PM-QKD system was com-

prehensively analyzed. Initially, we researched the inher-

ent parameter settings of ACO and the GA, recognizing

that varying parameter configurations can lead to differ-

ent operational outcomes. Subsequently, we systematically

evaluated the performances of the two NIAs in predicting

the parameters using the classical optimization method,

ETA, as a benchmark. The results demonstrated that

NIAs operate three orders of magnitude faster than ETA

while maintaining a power consumption below 8W. The

accuracy of the obtained key rate exceeded 97% (98.7%

for ACO and 97.6% for GA). However, the different NIAs

exhibited variations in the accuracy of parameter predic-

tions. The ACO displayed remarkable stability, with its

optimized parameter values fluctuating around the optimal

value, indicating excellent convergence characteristics. In

contrast, the GA showed considerable fluctuations in the

parameter predictions, resulting in a more scattered data

distribution. Therefore, NIAs can be effectively employed

for parameter prediction in decoy-state PM-QKD appli-

cation scenarios with stringent low-latency requirements.

Additionally, ACO or GA can be judiciously selected based

on a comprehensive computational efficiency assessment

and prediction accuracy assessment.
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