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Phase transitions are both thermodynamically and quantum-mechanically ubiquitous in nature and laborato-

ries, and their understanding remains one of the most active issues in modern physics and related disciplines. The

Landau theory provides a general framework to describe 𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦 phase transitions by introducing

order parameters and associated symmetry breaking. This theory is also taken as a starting point to explore

critical phenomena in connection with phase transitions in the renormalization group, which provides a complete

theoretical description of behaviors close to critical points. In this context, the microscopic mechanism of phase

transitions remains unclear. In this study, we explore the microscopic mechanism of the superradiant phase tran-

sition in the quantum Rabi model (QRM). First, we perform a diagonalization operation in an operator space to

obtain three fundamental patterns, denoted as 𝜆1, 𝜆2, and 𝜆3, involved in the QRM. Then, we explicitly analyze

the energy evolutions of these patterns with increasing coupling strength. The observed characteristic behaviors

reveal the microscopic mechanism of the superradiant phase transition as a consequence of competition between

patterns due to different phase relations. In other words, with increasing coupling strength, the pattern 𝜆1 drives

the phase transition, the pattern 𝜆2 exhibits a similar response speed but less energy compensation than the

pattern 𝜆1, and the pattern 𝜆3 exhibits a slow response speed but plays a key role in the balance between it and

the pattern 𝜆1, which stabilizes the new phase. This type of dissecting mechanism explains why and how the

superradiant phase transition occurs in the QRM and paves the way for exploring the microscopic mechanism of

phase transitions that occur frequently in nature.
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Introduction. The discovery of critical phenomena can

be traced back to 1822 based on de la Tour’s observa-

tions of supercritical liquids, [1] which were further refined

by Andrews in 1869, [2] who defined the concept of critical

points. In 1873, van der Waals proposed an equation of

state, namely, the famous van der Waals equation, to the-

oretically explain the continuity of the gaseous and liquid

states of matter. [3,4] Furthermore, Pierre Curie found in

1895 that ferromagnetic materials tend to lose their per-

manent magnetism once the temperature increases up to a

certain value, known as the Curie temperature or the Curie

point. In 1907, Weiss explained this phenomenon using his

molecular mean-field theory. [5] In addition, in the 1930s,

Bragg and Williams formulated the order-disorder transi-

tion in a binary alloy system. [6,7] Finally, in 1937, Lan-

dau presented a general and unified framework to treat

𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦 these phase transitions by introduc-

ing the concept of order parameter, which is associated

with certain broken symmetry. [8,9] This forms the founda-

tion of modern phase transition theory and of analyzing

critical behaviors. [10,11]

Although the concept of order parameter is still

𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 in nature underlying mean-field treat-

ment, the scaling analysis and renormalization group

method developed in the 1960–1970s further proposes the

concept of the universality class of phase transitions char-

acterized by various critical exponents. [12,13] Despite in-

tensive and extensive studies of the details of various phase

transitions in the past decades, in particular the formula-

tion of the renormalization group, it was clearly pointed

out in the press release for the Nobel Prize that “Wil-

son’s theory for critical phenomena gave a complete the-

oretical description of the behaviour close to the critical

point and gave also methods to calculate numerically the

crucial quantities.” [14] Based on the facts of the nature

of phenomenology of the Landau’s theory and the nature

of descriptiveness of the Wilson’s theory, the microscopic

mechanism of phase transitions remains unexplored to a

large extent. [15] Instead, the reason of phase transitions

is usually attributed to thermodynamical (at finite tem-

perature) or quantum mechanical (at zero temperature)

𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛𝑠 and the 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 between various possi-

ble orders during thermodynamical [10] or quantum phase

transitions. [11] The causes, mechanisms, and occurrences

of phase transitions remain unclear.

In this study, we explore this issue by taking the su-

perradiant phase transition in the quantum Rabi model

(QRM) [16–20] as an example. Early analysis of the ground

state in the QRM [21,22] showed that the ground state ex-

hibits a squeezing phenomenon in the strong, ultra-strong,
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and deep-strong coupling regimes [23–28], a precursor of the

distinguished physics of superradiance, which has been

further confirmed theoretically. [29–41] Recently, this phase

transition was observed in a single trapped ion [42,43] and

simulated experimentally in a platform of nuclear magnetic

resonance. [44] In Ref. [40], the present authors pointed out

that the superradiant phase transition occurs due to the

appearance of the induced double-well potential when the

coupling strength increases across its critical point. Here,

we further explore why and how the phase transition oc-

curs.

Methodologically, in contrast to Ref. [40], we first per-

form a diagonalization in an operator space (see below)

to obtain three fundamental patterns, denoted as 𝜆1, 𝜆2,

and 𝜆3, which are exact in the sense that the Hamiltonian

matrix can be exactly reproduced for a given Fock basis.

To further confirm the validity of the pattern picture, we

compare the energy levels, the mean photon numbers, and

spin-flip for the first four states with those obtained by nu-

merical exact diagonalization (ED). Then, we analyze the

ground-state superradiant phase transition by determin-

ing the energy levels of the ground and first excited states,

which almost degenerate in the superradiant phase. The

patterns 𝜆1, 𝜆2, and 𝜆3 play different roles in the super-

radiant phase transition due to the competition between

them: with increasing coupling strength, the pattern 𝜆1

drives the occurrence of the superradiant phase transition

by rapidly lowering the energy of the system as the cou-

pling strength approaches its critical point; the pattern 𝜆2

exhibits a similar response speed but has a less contribu-

tion to the ground state; the pattern 𝜆3 exhibits a slow

response but has an important contribution to the ground

state to balance the pattern 𝜆1. Thus, the system is stable

in the new phase. The different roles of the three patterns

reveal why and how the superradiant phase transition oc-

curs in the QRM, supporting our approach to microscop-

ically examine the superradiant phase transition. Both

methodologically and physically, our results pave the way

for exploring phase transitions in other systems.

Model and Method. The standard Hamiltonian of the

QRM reads

�̂� = ~𝜔
(︁
�̂�†�̂�+

Δ

2
�̂�𝑥 + 𝑔(�̂�+ �̂�†)�̂�𝑧

)︁
, (1)

where �̂�†(�̂�) is the creation (annihilation) operator of the

single-photon mode and �̂�𝑥(𝑧) is Pauli matrix denoting the

two-level atom. For convenience, we rescale the Hamilto-

nian by the mode frequency ~𝜔; thus, the energy interval

Δ and the coupling strength 𝑔 used in the following are

dimensionless, and the units of energy ~𝜔 are omitted for

simplicity. By using the relation �̂�𝑦�̂�𝑧 = 𝑖�̂�𝑥, Eq. (1) can

be reformulated as follows:

�̂� =
(︁

−𝑖�̂�𝑦 �̂�𝑧 �̂�†
)︁⎛⎜⎝ 0 Δ

4
0

Δ
4

0 𝑔

0 𝑔 1

⎞⎟⎠
⎛⎜⎝ 𝑖�̂�𝑦

�̂�𝑧

�̂�

⎞⎟⎠ (2)

=
3∑︁

𝑛=1

𝜆𝑛𝐴
†
𝑛𝐴𝑛, (3)

𝐴𝑛 = 𝑢𝑛,1(𝑖�̂�𝑦) + 𝑢𝑛,2�̂�𝑧 + 𝑢𝑛,3�̂�, (4)

where {𝜆𝑛, 𝑢𝑛}(𝑛 = 1, 2, 3) are the eigenvalues and eigen-

vectors of the matrix in Eq. (2), forming three basic pat-

terns denoted as the eigenenergies 𝜆𝑛 and corresponding

eigenvectors [Figs. 1(a1)–1(a3)]. Before discussing the ex-

plicit physics of the phase transition, it is necessary to

verify the validity of the obtained pattern picture.

Patterns and Solution. Equation (3) can be solved by

inserting into the complete basis |𝜎𝑧, 𝑚⟩, where �̂�𝑧|𝜎𝑧⟩ =
±(↑, ↓)|𝜎𝑧⟩ denoting the spin eigenstate along the 𝑧-

direction and �̂�†�̂�|𝑚⟩ = 𝑚|𝑚⟩(𝑚 = 0, 1, . . . , 𝑁) denot-

ing the truncated Fock basis with the photon number 𝑚.

First, the matrix [𝐴𝑛]𝜎𝑧 ,𝑚;𝜎′
𝑧 ,𝑚

′ = ⟨𝜎𝑧, 𝑚|𝐴𝑛|𝑚′, 𝜎′
𝑧⟩ is

obtained; then, Eq. (3) can be solved by diagonalizing the

matrix obtained by

⟨𝜎𝑧,𝑚|�̂�|𝑚′, 𝜎′
𝑧⟩ =

3∑︁
𝑛=1

𝜆𝑛⟨𝜎𝑧,𝑚|𝐴†
𝑛𝐴𝑛|𝑚′, 𝜎′

𝑧⟩

=

3∑︁
𝑛=1

𝜆𝑛

∑︁
𝜎′′
𝑧 ,𝑚′′

[𝐴†
𝑛]𝑚,𝜎𝑧 ;𝑚′′,𝜎′′

𝑧
[𝐴𝑛]𝑚′′,𝜎′′

𝑧 ;𝑚′,𝜎′
𝑧
. (5)

After obtaining the eigenstate wavefunctions 𝛹𝑖 (𝑖 =

0, 1, . . ., corresponding to the ground state, the first ex-

cited state, and so on, respectively), the wavefunctions

are projected onto different patterns to calculate the con-

tributions of the different patterns to the target physical

quantities. For example, the energy contributions of the

three patterns to the eigenstate 𝛹𝑖 can be calculated as

follows:

𝐸𝜆𝑛 = ⟨𝛹𝑖|𝜆𝑛𝐴
†
𝑛𝐴𝑛|𝛹𝑖⟩, (𝑛 = 1, 2, 3). (6)

From the calculation of ⟨𝛹𝑖|𝐴†
𝑛𝐴𝑛|𝛹𝑖⟩, the re-

lated physical observables can be extracted, such as

⟨𝛹𝑖|�̂�†�̂�|𝛹𝑖⟩𝜆𝑛 = 𝑢2
𝑛, 3⟨𝛹𝑖|�̂�†�̂�|𝛹𝑖⟩ and ⟨𝛹𝑖|�̂�𝑥|𝛹𝑖⟩𝜆𝑛 =

𝑢𝑛, 1𝑢𝑛, 2⟨𝛹𝑖|�̂�𝑥|𝛹𝑖⟩, which are easily calculated once 𝛹𝑖 are

obtained by diagonalizing the Hamiltonian matrix Eq. (5).

Before discussing the physics of the phase transition, we

first check the validity of the above formalism.

Figures 1(b1)–1(b3) present the first four energy lev-

els for the three patterns by taking a truncated Fock

basis with 𝑁 = 200. A dramatic energy change oc-

curs in all three patterns around the coupling strength

𝑔/𝑔c ∼ 1.0, which indicates the occurrence of a superradi-

ant phase transition in the system, a well-known result in

the literature. [30,32] The validity of our formalism is con-

firmed by comparing the summation (solid lines) of respec-

tive physical quantities for all three patterns, for example,

the energies shown in Figs. 1(b1)–1(b3), to those obtained

directly by ED (symbols). The results are the same, as

shown in Fig. 1(c) for the energy levels, Fig. 1(d) for the

photon number ⟨�̂�†�̂�⟩, and Fig. 1(e) for the spin-flip ⟨�̂�𝑥⟩
(for the latter two quantities, the respective pattern com-

ponents have not been shown here). This is not surprising

because no additional approximation has been introduced

in the pattern formalism compared with ED formalism.

Thus, the above formalism provides an alternative way to

dissect the Hamiltonian of the QRM into fundamental pat-

terns, providing a novel perspective to analyze the physics

involved in the QRM, for example, the superradiant phase

transition we focus on here.
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Fig. 1. Marks of obtained patterns and comparisons of physical quantities with results obtained by ED. (a1)–(a3)

Patterns marked by 𝜆1, 𝜆2, and 𝜆3 and corresponding eigenvectors with relative phase denoted by ±. Note that

there is a total free-phase factor 𝑒𝑖𝜋 , which is omitted here for simplicity. (b1)–(b3) First four pattern energy levels

as functions of coupling strength rescaled by 𝑔c =

√︂
1 +

√︁
1 + Δ2

16
[31] and Δ = 50. (c) Summations of pattern

energy levels (lines) and their comparison with the results obtained directly by ED (symbols). (d) Comparison

of the summations of the patterns’ photon number ⟨𝑎†𝑎⟩𝜆𝑛 (𝑛 = 1, 2, 3) (not shown) to those obtained by ED

(symbols). (e) Comparison of the summations of the ⟨𝜎𝑥⟩𝜆𝑛 of patterns (𝑛 = 1, 2, 3) (not shown) to those obtained

by ED (symbols). In the above comparisons, the first four energy levels are used.

Nature of Phase Transition. The QRM involves a

superradiant phase transition as the coupling strength

𝑔/𝑔c ∼ 1.0, where the energy levels, mean photon num-

bers, and spin-flip change dramatically [Figs. 1(c)–1(e)].

We perform detailed and deeper analysis of why and how

the phase transition occurs by carefully checking the dif-

ferent contributions of the different patterns to the ground

and first excited states, from which the competition be-

tween the different patterns can be observed. In Fig. 2(a1),

in the weak coupling regime, the ground state of the sys-

tem is completely dominated by the pattern 𝜆1 (thin red

line), whereas the other patterns do not contribute to the

ground state. This regime is a well-known normal phase

in which the photon number is zero. With increasing cou-

pling strength, the system enters the superradiant phase,

and the behaviors of different patterns can be evaluated.

First, the pattern 𝜆1 exhibits an obvious downturn and

then descends continually. The pattern 𝜆2 exhibits a sim-

ilarly rapid response to the change in the form of compen-

sation. This is physically reasonable because the system

exhibits a trend to remain in its previous state. How-

ever, the contribution from the pattern 𝜆2 is not sufficient

to compensate for the rapid increase in the contribution

from the pattern 𝜆1; as a result, the pattern 𝜆3 begins to

become a main contribution in balance to the pattern 𝜆1

[Fig. 2(a2)], and the second-order derivatives of the contri-

butions of the patterns 𝜆1 and 𝜆3 exhibit similar changes

but opposite trends with increasing coupling strength in

the superradiant phase. The competition between the pat-

terns 𝜆1 and 𝜆2, 3 uncovers the microscopic mechanism of

the superradiant phase transition: by increasing the cou-

pling strength, the photons are excited to decrease the

energy of the system driven by the pattern 𝜆1. To balance

the energy decrease caused by the pattern 𝜆1, the pat-

terns 𝜆2, 3 contribute positive energy, which stabilizes the

system in the newly developed superradiant phase. The

competition and balance relations reveal why and how the

superradiant phase transition occurs in the QRM.

A similar behavior was observed in the first excited

state [Figs. 2(b1) and 2(b2)]. In particular, the inset in
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Fig. 2. (a1), (b1) Energy levels of ground and first ex-

cited states (heavy black solid lines) and corresponding

pattern components (thin red, green, and blue solid lines)

as functions of coupling strength. (a2), (b2) Second-order

derivatives of the corresponding energy levels (heavy black

solid lines) and their pattern components (thin red, green,

and blue solid lines). The inset shows the energy levels of

the ground and first excited states.
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Fig. 2(b1) shows the close of the energy gap between the

first excited state and the ground state, which is a typical

behavior of the superradiant phase transition.
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Fig. 3. Patterns marked by their eigenenergies and eigen-

functions as functions of coupling strength. The first col-

umn: (a1) the eigenenergy of the pattern 𝜆𝑛(𝑛 = 1, 2, 3);

(a2) eigenfunctions 𝑢1,𝑚(𝑚 = 1, 2, 3); (a3) eigenfunc-

tions 𝑢2,𝑚; and (a4) eigenfunctions 𝑢3,𝑚. The second col-

umn: (b1)–(b4) first-order derivatives of the correspond-

ing (a1)–(a4) with respect to the coupling strength. The

third column: (c1)–(c4) the second-order derivatives of the

corresponding (a1)–(a4) with respect to coupling strength.

For each pattern, three components correspond to the op-

erators 𝑖�̂�𝑦 (solid lines), �̂�𝑧 (dash lines), and �̂� (dotted-

dash lines).

After discussing the competition and balance relations

between the different patterns during the phase transition,

it is useful to further explore the properties of the patterns

because the pattern picture is presented for the first time

in the literature. Figure 3 shows the eigenenergies 𝜆𝑛 and

corresponding eigenvectors 𝑢𝑛, 𝑖(𝑛, 𝑖 = 1, 2, 3) of the pat-

terns and their first- and second-order derivatives as func-

tions of the coupling strength. A few properties are noted:

(i) the signs or relative phases between the components in

each pattern remain fixed [Figs. 1(a1)–1(a3)], which can be

used to mark the patterns; (ii) in the patterns 𝜆1 and 𝜆3,

the components 𝑖�̂�𝑦 and �̂�𝑧 representing the state of the

two-level atom dominate over the component �̂� represent-

ing the photon mode [Figs. 3(a2) and 3(a4)]; (iii) in the

pattern 𝜆2, the photon mode is dominant and the weight

of the first component 𝑖�̂�𝑦 increases with increasing cou-

pling strength, and that of the second component �̂�𝑧 re-

mains negligible in the entire coupling regime [Fig. 3(a3)];

(iv) the first- and second-order derivatives of the pattern

eigenenergies and eigenvectors shown in Figs. 3(b1)–3(b4)

and Figs. 3(c1)–3(c4), respectively, indicate that the pat-

terns exhibit no singular behavior. These properties indi-

cate that the patterns 𝐴𝑛 are single-body operators from

which no information about the phase transition can be

obtained. In contrast, the competition and balance be-

tween the different patterns play key roles in the phase

transition. This is the focus of this study: the microscopic

mechanism of the phase transition.
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Fig. 4. Wavefunctions and their dissections given by

𝑢𝑛, 3|𝛹𝑖⟩ of the ground state (a1)–(a3) and first excited

state (b1)–(b3) for three typical coupling strengths 𝑔/𝑔c =

0.5 (a1) and (b1); 1.0 (a2) and (b2); 1.5 (a3) and (b3),

corresponding to the normal, critical, and superradiant

phases, respectively, in the Fock basis. The heavy black

solid lines denote the total wavefunctions, and the thin col-

ored lines (red, green, and blue) correspond to the three

components in the patterns 𝜆1, 𝜆2, and 𝜆3, respectively.
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To evaluate the contributions of the patterns to the

superradiant phase, the wavefunctions of the system con-

sisting of the direct product of the two levels and the Fock

basis of the photon mode were investigated. Here, we only

present the up-spin branch. Figure 4 shows the results for

the ground state (the first row) and first excited state (the

second row). Figures 5(a) and 5(b) plot the physical ob-

servables ⟨�̂�†�̂�⟩𝜆𝑛 and ⟨�̂�𝑥⟩𝜆𝑛 , respectively. In all regimes,

the pattern 𝜆2 accounts for almost all weight of the photon

mode but makes a negligible contribution to the spin-flip

[Fig. 5(b)]. In the superradiant phase, the contributions

from all patterns are displaced from the zero point of the

harmonic oscillator describing the photon mode, which is

a typical feature of the superradiant phase. The contri-

butions from the patterns 𝜆1 and 𝜆3 have an opposite

phase, which indicates their competing relation. This is

also obvious from the different phase relations shown in

Figs. 1(a1) and 1(a3). With increasing coupling strength,

the spin degree of freedom is strongly coupled to the pho-

ton mode; the superradiant photons dominate the system,

and the influence of the spin degree of freedom is gradually

suppressed, as shown in Fig. 5(b). These results provide

insights into the physics of the strongly coupled regime of

the QRM from the pattern picture, which deserves further

exploration.
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Summary and Outlook. In this study, we propose a

scheme to analyze the physics of the superradiant phase

transition from a microscopic viewpoint represented by a

newly developed picture, namely, the pattern picture. This

was obtained by diagonalizing the original Hamiltonian in

the operator space {𝑖�̂�𝑦, �̂�𝑧, �̂�}, which is different from

typical methods in the literature. Using the pattern pic-

ture, we uncovered the microscopic mechanism of the su-

perradiant phase transition in the QRM by dissecting the

contributions of the obtained patterns to the ground and

first excited states, thereby demonstrating the competi-

tion and balance relations between the patterns during the

phase transition. Due to the fundamental role of the QRM

in describing the interactions between light and matter, it

is expected that the dissection of the obtained patterns

can be further extended to more complex models, such as

Dicke [45] and spin-boson models, [46] to understand addi-

tional intriguing physics involved in these models, such as

the decoherence and dissipation mechanisms.
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