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We report an out-of-plane magnetic field induced large photoluminescence enhancement in WS2 flakes at 4K, in
contrast to the photoluminescence enhancement provided by an in-plane field in general. Two mechanisms for
the enhancement are proposed. One is a larger overlap of the electron and hole caused by the magnetic field
induced confinement. The other is that the energy difference between 𝛬 and 𝐾 valleys is reduced by magnetic
field, and thus enhancing the corresponding indirect-transition trions. Meanwhile, the Landé 𝑔 factor of the trion
is measured to be −0.8, whose absolute value is much smaller than normal exciton, which is around | − 4|. A
model for the trion 𝑔 factor is presented, confirming that the smaller absolute value of the Landé 𝑔 factor is a
behavior of this 𝛬–𝐾 trion. By extending the valley space, we believe this work provides a further understanding
of the valleytronics in monolayer transition metal dichalcogenides.

PACS: 78.67.−n, 78.55.−m DOI: 10.1088/0256-307X/37/8/087801

Recently optical properties with valley features of
transition metal dichalcogenides (TMDs) have been
investigated intensively.[1−5] Especially, the magneto-
optical properties have raised a great deal of atten-
tion since magneto-photoluminescence spectroscopy is
a promising tool to investigate spin and valley prop-
erties of excitons.[6−10] Normally, the valley and spin
information is locked by the selection rule. By ap-
plying a magnetic field, the degeneracy of the spin
is lifted, and the valley information will change ac-
cordingly. Due to the fact that the spin-orbit cou-
plings of a conduction band and valence band have
opposite signs,[11,12] the lower energy state does not
emit photons because of the selection rule for dark-
ish materials.[13] In-plane magnetic field induces tun-
neling between two spin statuses, and thus unlock-
ing the restriction between spin and valley informa-
tion, making the dark excitons bright. Therefore, the
photoluminescence (PL) can be enhanced by apply-
ing an in-plane magnetic field in monolayer darkish

materials.[13,14] However, different from the in-plane
magnetic field, out-of-plane magnetic field-induced PL
enhancement in monolayer TMDs has yet to be ex-
plored.

In addition to the external field modulating the
PL, the valley features may also affect the PL in-
tensity. Recently, the intervalley excitons including
𝐾, 𝛬 valleys (middle point between 𝛤 and 𝐾, some-
times also called 𝑄 valley[15]) in the conduction band
and 𝐾, 𝛤 valleys in the valence band have been
investigated.[16] The properties of these valleys can
be quite different from 𝐾 valleys, such as orbital
magnetic momenta, spin status of eigenstates, energy
shifts by strain and effective masses of carriers.[17−19]

The differences provide an opportunity to open a new
field of information processing considering the valley
freedom.

In this work, we report an observation of strong
PL enhancement by the out-of-plane magnetic field at
cryogenic temperature. Two mechanisms for the en-
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hancement are provided. One is the increase of wave-
function overlapping between electron and hole. The
other is the enhanced indirect transitions between 𝐾

and 𝛬 valleys in WS2 flakes, which is a result of the
decrease of the energy difference of 𝐾 and 𝛬 valleys
in the out-of-plane magnetic field, accompanied with
a small absolute Landé 𝑔 factor value.
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Fig. 1. Contour plot of PL spectra from a WS2 flake with
a vertical magnetic field from −9T to 9T at 4.2K. When
the magnetic field increases, the neutral exciton peak(𝑋0),
trion peak (𝑋−) and defect-bound excitons (𝑋𝐿

1,2,3) are
enhanced significantly.

Experimental Results and Discussions. The WS2

flakes are exfoliated from bulk materials and trans-
ferred to a Si/SiO2 substrate as shown in the inset of
Fig. 2(a). The PL spectra from WS2 flake at different
magnetic fields are shown in Fig. 1 at 4.2 K with an
excitation laser at 532 nm. The exciton peak (marked
as 𝑋0) at 2.10 eV, the negative trion peaks (marked as
𝑋−) at 2.06 eV and defect-bound excitons (marked as
𝑋𝐿

𝑗 , 𝑗 = 1, 2, 3) at lower energy are identified.[20] The
charged trion in monolayer WS2 has been confirmed
to be negative by electric tuning.[21,22] By measuring
the variation of PL intensity logarithm with differ-
ent pumping powers, the contribution of bi-exciton
is excluded.[23] Since the direction of the magnetic
field is out-of-plane, the contribution of the dark ex-
citon is excluded.[24] It can be seen that the inten-
sities of PL peaks increase with increasing magnetic
field. In order to obtain the intensity increase in de-
tail, the PL spectra are fitted with a multi-peak non-
linear least-square curve-fitting python package in the
Lorentz shape as shown in Fig. 2(a). When the mag-
netic field is increased to 9 T, the integration PL in-
tensities of the neutral exciton (𝑋0), trion peak (𝑋−)
and defect-bound excitons (𝑋𝐿

1,2,3) are enhanced by
47%, 70%, 67%, 93% and 174%, respectively, as shown
in Fig. 2(b). The origin of the broad peak at 1.9 eV is
still unclear, which does not show a clear enhancement
with magnetic field.

The enhancement of emission with an applied
magnetic field has been reported in other low di-

mensional semiconductor materials, such as quantum
dot and quantum well systems in III–V compound
semiconductors.[25−27] The magnetic field transforms
the wavefunction of electron and hole and reduces
wavefunction extension. Due to the large difference
of effective masses of electrons and holes,[28] or the
difference of band structures in heterostructure-like
core-shell quantum dots,[29] the electrons and holes
are spatially separated. The wavefunction extension
modulation could increase the overlap of their wave-
function distribution, then influence the recombina-
tion rate, and thus resulting in a PL intensity enhance-
ment.
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Fig. 2. (a) Photoluminescence spectrum from the WS2

flake with magnetic field of 9T at 4.2K. The black line is
the PL spectrum, and the color lines are the multi-peak
fitted curves. The optical microscope image is shown in
the inset. (b) Peak integration intensities of 𝑋0, 𝑋− and
𝑋𝐿

1,2,3 in different magnetic fields. At 9T, the integra-
tion PL intensities of the neutral exciton (𝑋0), trion peak
(𝑋−) and defect-bound excitons (𝑋𝐿

1,2,3) are enhanced by
47%, 70%, 67%, 93% and 174%, respectively.

Generally, in the WS2, there are neither such a
large effective mass difference, nor spacial difference
like heterostructure. However, due to impurities or
defects, a spacial difference will also be induced. For
example, impurities capture carriers and form-charged
centers. Then excitons interact with these charged
centers, leading to wavefunction radius modification
by Coulomb interaction. The opposite charges be-
tween the electron and hole make the modifications
opposite, and thus induce the spacial difference. For
Wannier-like excitons, the typical length scale of the

087801-2

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

Chin. Phys. Lett.
References

http://cpl.iphy.ac.cn


CHIN.PHYS. LETT. Vol. 37, No. 8 (2020) 087801

ground state is 𝑎 = 𝜖r𝑚0

𝑚eff
𝑎B,[30] where 𝜖r is the rela-

tive dielectric constant, 𝑚0 is the electron mass in vac-
uum, 𝑚eff is the effective reduced mass for the exciton,
and 𝑎B is the Bohr radius of the hydrogen atom. For
WS2, the 𝑚eff ≈ 0.5𝑚0 for both electrons and holes,
and relative dielectric constant 𝜖r ≈ 10,[31] therefore
𝑎 ≈ 1nm. The length scale of carriers with magnetic
field can be expressed by gyroradius 𝑟(𝐵) =

√︁
~
𝑒𝐵 .

With magnetic field of 9 T, it is around 8nm. The
influence of magnetic field cannot be neglected for
defect-bound exciton. When magnetic field is ap-
plied, the wavefunction shape of trapped carriers will
be shrunk, making electrons and holes more likely to
recombine.
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Fig. 3. Band structures without (left, sky blue back-
ground) and with a magnetic field (right, violet back-
ground). Red lines represent bands whose spin eigenstate
are up, and blue lines for down. The 𝛬–𝐾 trion contains
a hole and an electron in 𝐾 valley, and another electron
in the 𝛬 valley. Due to the difference of orbital terms be-
tween the 𝛬 valley and 𝐾 valley, the band shifts differently
with magnetic field.

Meanwhile, the PL enhancement could be intro-
duced by the reduction of the energy difference be-
tween the 𝐾 and 𝛬 valleys. As shown in Fig. 3, with-
out magnetic field, the spin-up energy level of 𝛬+ val-
ley is lower than that of𝐾+, and the spin-down energy
level of the 𝛬− valley is lower than 𝐾−. Here, we take
spin-up situation as an example. Once magnetic field
is applied on these flakes, the 𝛬 valley shifting will be
larger than the 𝐾 valley shifting, which will be ex-
plained later in Eq. (6). As a result, the energy differ-
ence between 𝐾 and 𝛬 is reduced, as shown in Fig. 3.
Thus the intervalley scattering between the 𝛬 electron
and 𝐾 electron occurs more frequently, which can be
derived from models of Raman spectrum analysis.[32]

This scattering thus influences the occupation status
of electrons, making the PL more bright. If the mag-
netic field is positive, the 𝜎+ component will be en-
hanced. If it is negative, the 𝜎− component will be
enhanced. Therefore, related PL peaks are enhanced.

The influence of 𝛬 valley not only affects the PL
intensity, but also the Landé 𝑔 factors. The 𝑔 factors
for conduction band and valence band at each valley
are expressed as

𝑔𝑉
±,𝑠

𝑏 =
𝐸𝑉 ±,𝑠

𝑏 (𝐵)− 𝐸𝑉 ±,𝑠
𝑏 (0)

𝜇B𝐵
, (1)

where 𝐵 is the out-of-plane magnetic field, 𝑏 = {c, v}
denotes conduction and valence band respectively,
𝑉 ± = {𝐾+,𝐾−, 𝛬+, 𝛬−} denotes the valleys, and
𝑠 = {↑, ↓} denotes spin. For normal excitons, the
Landé 𝑔 factor can then be expressed by 𝑔 = 𝑔𝑉,↑c −
𝑔𝑉,↑v − 𝑔𝑉,↓c + 𝑔𝑉,↓v . The linear energy level shift caused
by magnetic field can be contributed by three parts:
spin, orbital and valley components:[33−36] 𝑔𝑉,𝑠𝑏 =

𝑔𝑉,𝑠𝑏 (spin) + 𝑔𝑉,𝑠𝑏 (orbit) + 𝑔𝑉,𝑠𝑏 (valley). For neutral ex-
citon in TMDs, the spins of electron and hole are
in the same direction, the spin term is zero, i.e.,
𝑔𝑉,𝑠c (spin) − 𝑔𝑉,𝑠v (spin) = (± 1

2 ) − (± 1
2 ) = 0.[37] The

orbital terms are mainly from the angular momen-
tum azimuthal component of the electron state around
the transition metal atom, 𝑔𝑉,𝑠𝑏 (orbit) = ⟨�̂�𝑧⟩/~. For
the conduction band at the 𝐾 point, the electron
mainly possesses |𝐾±

c ⟩ = |𝑑𝑧2⟩ orbit and thus the
azimuthal component is ⟨𝐾±

c |�̂�𝑧|𝐾±
c ⟩ = 0. For the

valence band at 𝐾 point, the state mainly possesses
|𝐾±

v ⟩ = 1√
2
(|𝑑𝑥2−𝑦2⟩± i|𝑑𝑥𝑦⟩) orbit and the azimuthal

component is ⟨𝐾±
v |�̂�𝑧|𝐾±

v ⟩ = ±2~.[1] Therefore the
orbital term is 𝑔(orbit) = (0 − (+2)) − (0 − (−2)) =

−4. The valley term is proportional to the inverse
of effective mass. For the conduction band it is
𝑔𝑉±,𝑠
c (valley) = ±𝑚0/𝑚

𝑉
e , and for the valence band

it is 𝑔𝑉±,𝑠
v (valley) = ∓𝑚0/𝑚

𝑉
h , where 𝑚𝑉

e and 𝑚𝑉
h

are the effective masses of the electron and hole at
the 𝑉 valley respectively. Thus the valley term is
𝑔(valley) = (𝑚0/𝑚

𝑉
e − 𝑚0/𝑚

𝑉
h ) − [(−𝑚0/𝑚

𝑉
e ) −

(−𝑚0/𝑚
𝑉
h )] = 2(𝑚0/𝑚

𝑉
e − 𝑚0/𝑚

𝑉
h ).

[38] In total,
𝑔X0 = −4 + 2(𝑚0/𝑚

𝐾
e − 𝑚0/𝑚

𝐾
h ). Because the ef-

fective masses of 𝑚e and 𝑚h are similar in WS2.[19]

Therefore, the 𝑔 factor of the exciton is around −4,
which has been confirmed experimentally before.[39,40]

For negative trion, there are two electrons e1, e2
and one hole h, where e1 at 𝑉 ±

1 valley with spin
𝑠±1 , e2 at 𝑉 ±

2 valley with spin 𝑠±2 , and h at 𝑉 ±
h

valley. Due to the large spin–orbit coupling (SOC)
in the valence band, excitons are clearly separated
into A excitons and B excitons by energy difference.
Here ± denotes the hole spin direction of A exci-
tons. If we neglect the influence of binding energy
variation by magnetic field, only focus on the Zee-
man effect, then the 𝑔 factor can be expressed as
𝑔 = 𝑔

𝑉𝑗+,𝑠𝑗+
c − 𝑔𝑉h+,↑

v − 𝑔
𝑉𝑗−,𝑠𝑗−
c + 𝑔𝑉h−,↓

v , where
𝑗 = {1, 2} is the electron index whose energy level is
lower. Since there are two electrons, the excess elec-
tron of negative trion can fall in other valleys without
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violating the momentum conservation rule. If this ex-
cessive electron possesses the same 𝑘 vector but differ-
ent spins, then the trion will be a singlet trion; if this
extra electron falls in the opposite 𝑘 vectors but same
spin, then the trion is a triplet trion. For the singlet,
𝑉 ±
1 = 𝐾±, 𝑉 ±

2 = 𝐾±, 𝑉 ±
h = 𝐾±, 𝐸(e1) > 𝐸(e2),

𝑠±2 = ∓~/2,

𝑔(X−
singlet) = 𝑔𝐾+,↓

c − 𝑔𝐾+,↑
v − 𝑔𝐾−,↑

c + 𝑔𝐾−,↓
v

= [(−1/2)− (+1/2)− (+1/2) + (−1/2)]+

+ [0− (+2)− 0 + (−2)]+

+
[︁(︁

+
𝑚0

𝑚𝐾
e

)︁
−
(︁
+
𝑚0

𝑚𝐾
h

)︁
−
(︁
− 𝑚0

𝑚𝐾
e

)︁
+
(︁
− 𝑚0

𝑚𝐾
h

)︁]︁
= − 6 + 2(𝑚0/𝑚

𝐾
e −𝑚0/𝑚

𝐾
h ) ≈ −6. (2)

For the triplet, 𝑉1± = 𝐾±, 𝑉 ±
2 = 𝐾∓, 𝑉 ±

h = 𝐾±,
𝐸(e1) > 𝐸(e2), 𝑠±2 = ±~/2,

𝑔(X−
triplet) = 𝑔𝐾−,↑

c − 𝑔𝐾+,↑
v − 𝑔𝐾+,↓

c + 𝑔𝐾−,↓
v

= [(+1/2)− (+1/2)− (−1/2) + (−1/2)]+

+ [0− (+2)− 0 + (−2)]+

+
[︁(︁

− 𝑚0

𝑚𝐾
e

)︁
−
(︁
+
𝑚0

𝑚𝐾
h

)︁
−
(︁
+
𝑚0

𝑚𝐾
e

)︁
+
(︁
− 𝑚0

𝑚𝐾
h

)︁]︁
= − 4− 2(𝑚0/𝑚

𝐾
e +𝑚0/𝑚

𝐾
h ) ≪ −4. (3)

This is close to the experimental data. For example,
in WSe2, the 𝑔 factor is around 𝑔 = −5.3 of singlet,
and −10.5 of triplet.[41]

The 𝛬–𝐾 trions, whose extra electron falls in 𝛬

valley instead of 𝐾, have different orbital momentum
from 𝐾–𝐾 trions, leading to different 𝑔 factors. The
electron state of conduction band is no more consti-
tuted of |𝑑𝑧2⟩ orbit, but is a superposition of several
states. To investigate the 𝑔 factor of the 𝛬–𝐾 trion,
we estimated the orbital projections at 𝛬 valley, along
with the band structure of monolayer WS2. The ab-
initio calculation is based on the density functional
theory. The projector augmented wave method[42] is
used together with local density approximation. Four
empty cell layers are filled between material layers
to prevent interlayer interactions. The positions of
atoms are initialized with structure data from Mate-
rials Project mp-224.[43] Before the electron density
wave calculation, an ionic relaxation is executed to
ensure the structure stable. The SOC is not consid-
ered in this calculation, since its influence to projec-
tion amplitudes is a minor term. The main influence
of SOC is lifting the degeneracy of spins.

The result of projections on the orbital states
around tungsten atoms are 1.6% of 𝑠, 0.9% of 𝑝𝑥,
0.7% of 𝑝𝑦, 43.1% of 𝑑𝑥2−𝑦2 , 32.5% of 𝑑𝑥𝑦, 21.1%

of 𝑑𝑧2 , and 0 of else. For any state |𝜓⟩, if we have
⟨𝑝𝑥|𝜓⟩ = 𝐴𝑥exp(i𝜑𝑥) and ⟨𝑝𝑦|𝜓⟩ = 𝐴𝑦exp(i𝜑𝑦), then
|⟨𝑝+|𝜓⟩|2 − |⟨𝑝−|𝜓⟩|2 = 2𝐴𝑥𝐴𝑦sin(𝜑𝑦 − 𝜑𝑥), where
|𝑝±⟩ = 1√

2
(|𝑝𝑥⟩ ± i|𝑝𝑦⟩). The phase difference will

change to ±𝜋
2 when degeneracy is broken by the mag-

net field or SOC. The amplitudes of components thus
are

|⟨𝑝+|𝜓±⟩|2 − |⟨𝑝−|𝜓±⟩|2 = ±2|⟨𝑝𝑥|𝜓±⟩||⟨𝑝𝑦|𝜓±⟩|

= ± 2
√︀
0.9%× 0.7% = ±0.016,

|⟨𝑑(𝑥+𝑖𝑦)2 |𝜓±⟩|2 − |⟨𝑑(𝑥−𝑖𝑦)2 |𝜓±⟩|2

= ± 2|⟨𝑑𝑥2−𝑦2 |𝜓±⟩||⟨𝑑𝑥𝑦|𝜓±⟩|

= ± 2
√︀
43.1%× 32.5% = ±0.7495,

|⟨𝑑(𝑥±𝑖𝑦)𝑧|𝜓±⟩|2 = 0, (4)

where |𝜓±⟩ is the state of 𝛬± valley. Therefore the
expected orbital angular momentum component in 𝑧

direction around the tungsten atom should be

⟨�̂�𝑧⟩ = 2~|⟨𝑑(𝑥+𝑖𝑦)2 |𝜓⟩|2 − 2~|⟨𝑑(𝑥−𝑖𝑦)2 |𝜓⟩|2

+ ~|⟨𝑑(𝑥+𝑖𝑦)𝑧|𝜓⟩|2 − ~|⟨𝑑(𝑥−𝑖𝑦)𝑧|𝜓⟩|2 + 0~|⟨𝑑𝑧2 |𝜓⟩|2

+ ~|⟨𝑝+|𝜓⟩|2 − ~|⟨𝑝−|𝜓⟩|2 + 0~|⟨𝑠|𝜓⟩|2

= ±
(︁
2× 0.7495 + 0 + 0 + 0.016 + 0

)︁
~

= ± 1.515~.
(5)

Thus the conduction band energy shift of 𝛬 valley is
larger than 𝐾 valley,

𝑔𝛬+,↑
𝑐 =

1

2
+1.515+

𝑚0

𝑚𝛬
e

>
1

2
+0+

𝑚0

𝑚𝐾
e

= 𝑔𝐾+,↑
𝑐 . (6)

Therefore the energy difference between 𝛬 valley and
𝐾 valley is reduced by magnetic field, which leads to
the PL enhancement.

As for the 𝑔 factor of 𝛬–𝐾 trion: 𝑉 ±
1 = 𝐾±, 𝑉 ±

2 =

𝛬±, 𝑉 ±
h = 𝐾±, 𝐸(e1) > 𝐸(e2), 𝑠

±
2 = ±~/2,

𝑔(X−
𝛬−K) = 𝑔𝛬+,↑

c − 𝑔𝐾+,↑
v − 𝑔𝛬−,↓

c + 𝑔𝐾−,↓
v

= [(+1/2)− (+1/2)− (−1/2) + (−1/2)]+

+ [(+1.515)− (+2)− (−1.515) + (−2)]+

+
[︁(︁

+
𝑚0

𝑚𝛬
e

)︁
−
(︁
+
𝑚0

𝑚𝐾
h

)︁
−
(︁
−𝑚0

𝑚𝛬
e

)︁
+
(︁
− 𝑚0

𝑚𝐾
h

)︁]︁
= − 0.970− 2(𝑚0/𝑚

𝛬
e −𝑚0/𝑚

𝐾
h ). (7)

Since the effective masses of the electron and hole are
similar, we neglect the 𝑔valley in the same way as 𝐾–𝐾
trion. Therefore 𝑔 ≈ −0.97, whose absolute value is
extraordinarily small.

In order to obtain the Landé 𝑔 factor of the ex-
citon states experimentally, we measured 𝜎+ and 𝜎−

components of the PL spectra at different magnetic
fields. The normalized spectra for 9T, 0T and −9T
are shown in Fig. 4(a). The red curves are 𝜎+ po-
larization and the blue curves are 𝜎− polarization.
The peak centers are extracted by multi-peak non-
linear least-squares curve-fitting python package from
spectra. The 𝑔 factor is extracted by linear regres-
sion of the peak centers. The measured 𝑔 factor of
𝑋0 is −3.08, close to the theoretical value (around
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−4).[39,40] The measured 𝑔 factors of 𝑋𝐿
1,2,3 are −4.9,

−7.2 and −10.2, respectively, consistent with the re-
ported values in TMDs.[8] So far, the 𝑔 factors of
defect-bound excitons vary in a wide range from −6

to −16, which has been reported in TMDs.[44−46] Our
results for defect related peaks fall in this range. Sur-
prisingly, the measured 𝑔 factor of 𝑋− is −0.8, whose
absolute value is much smaller than the above values
as shown in Fig. 4(c). The small absolute value is close
to our calculation result | − 0.97|, which confirms our
assumption that the trion is an indirect transition be-
tween 𝛬 and 𝐾 valleys. With the assistance of 𝛬–𝐾
trions, the PL intensity can be enhanced.
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Fig. 4. (a) The normalized spectra for 9T, 0T and −9T.
(b)–(f) Peak centers of (b) 𝑋0, (c) 𝑋− and (d)–(f) 𝑋𝐿

1,2,3

for 𝜎+ (red) and 𝜎− (blue) polarizations. The 𝑔 factor of
𝑋− is −0.8, whose absolute value is smaller than other ex-
citons, while the 𝑔 factors of 𝑋0 and 𝑋𝐿

1,2,3 are consistent
with the previous reports.[8,39,40]

In conclusion, a magnetic field-induced large PL
enhancement of WS2 in a cryogenic environment is
reported. Two mechanisms have been discussed to
explain the enhancement qualitatively. One is at-
tributed to the magnetic field induced wavefunction
confinement causing a larger overlap of electron and
hole wavefunction extension. The other is related to
an indirect-transition trion between 𝛬 and 𝐾 valleys.
According to the model considered, the 𝛬–𝐾 trion has
a smaller absolute value of 𝑔 factor than 𝐾–𝐾 trions,
which is confirmed experimentally. We believe this

work will extend valleytronics with different valleys in
monolayer TMDs in future.
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