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We investigate the critical behavior and the duality property of the ferromagnetic 𝑞-state clock model on the
square lattice based on the tensor-network formalism. From the entanglement spectra of local tensors defined in
the original and dual lattices, we obtain the exact self-dual points for the model with 𝑞 ≤ 5 and approximate
self-dual points for 𝑞 ≥ 6. We calculate accurately the lower and upper critical temperatures for the six-state
clock model from the fixed-point tensors determined using the higher-order tensor renormalization group method
and compare with other numerical results.
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Phase transition is one of the most important
and challenge problems in condensed matter physics
and statistical physics. For a long time, it is be-
lieved that all continuous phase transitions can be
described by the Landau symmetry-breaking theory.
However, since the early 1970s, a number of topolog-
ical phase transitions have been found, which can-
not be described by symmetry breaking. One of
the most famous examples is the Kosterlitz–Thouless
(KT) transition[1−3] observed in the two-dimensional
(2D) 𝑋𝑌 model. This kind of transitions is driven by
topological excitations and does not break any sym-
metries.

A more interesting model exhibiting the KT tran-
sition is the 𝑞-state clock model, which may be con-
sidered as a discrete version of the 𝑋𝑌 model. This
model exhibits a Landau-type second-order phase
transition between a high temperature paramagnetic
phase and a low temperature magnetic long-range or-
dered phase for 2 ≤ 𝑞 ≤ 4 on the square lattice. When
𝑞 ≥ 5, a topological non-trivial KT phase with quasi
long-range order emerges between these two phases.[4]
Both the transitions from the paramagnetic phase to
the KT phase at a high temperature and from the
KT phase to the magnetic ordered phase at a lower
temperature are of the KT type. This model has
been extensively studied by analytic and numerical
methods.[4−19] However, the phase transition temper-
atures are difficult to determine due to the topological
nature of the KT transition.

Recently, the tensor-network formalism[20−27] has
emerged as a powerful tool to study phases and phase

transitions for both quantum and classical systems.
Both the generating functionals of quantum systems
and the partition functions of classical models can be
represented as tensor network states (or models).[23]
By calculating the renormalization flow of the local
tensors using the coarse graining tensor renormaliza-
tion group methods,[21−27] one can obtain the infor-
mation of the phases and their critical behaviors. One
can also perform the duality transformation[28] for the
tensor network states to establish a relationship be-
tween the original and dual systems. In particular,
the self-duality can be used to determine the critical
points.

In this Letter, we investigate the ferromagnetic 𝑞-
state clock model in the tensor network representa-
tion by employing the duality transformation and the
higher-order tensor renormalization group (HOTRG)
method.[24] We calculate the entanglement spectra of
the local tensors defined in the original and dual lat-
tices, and obtain exactly the self-dual points for the
model with 𝑞 ≤ 5. For 𝑞 ≥ 6, we find an approx-
imate solution for the self-dual points by the dual-
ity property of the entanglement entropy of local ten-
sors, which is consistent with the result obtained from
the bond-algebraic approach.[6] Furthermore, we de-
termine accurately the critical temperatures for the
six-state clock model from the fixed-point tensor ob-
tained by the HOTRG iteration.

The ferromagnetic 𝑞-state clock model on a square
lattice is defined by the Hamiltonian

𝐻 = −
∑︁
⟨𝑖𝑗⟩

cos(𝜃𝑖 − 𝜃𝑗), (1)
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where 𝜃𝑖 is the 𝑖′th spin angle and takes one of the 𝑞
discrete values,

𝜃𝑖 =
2𝜋

𝑞
𝑘, (𝑘 = 0, . . . , 𝑞 − 1). (2)

This model is also called the vector Potts model. It
possesses a discrete 𝑍𝑞 symmetry because the Hamil-
tonian is invariant if all spin variables 𝜃𝑖 are changed
by 2𝜋

𝑞 . If 𝑞 = 2, it reduces to the Ising model. The
𝑞 = 3 clock model is equivalent to the three-state Potts
model. In the limit 𝑞 → ∞, it becomes the continuous
𝑋𝑌 model.
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Fig. 1. (a) Local tensor 𝑇𝑙𝑟𝑢𝑑 defined in the original
square lattice spanned by the red dots. (b) Local ten-
sor 𝑇𝜎1𝜎2𝜎3𝜎4 defined in the dual lattice spanned by the
open blue circles.

In the original square lattice, the partition function
can be expressed as a tensor network model and the
local tensor is defined at each lattice site (Fig. 1(a))

𝑍 = Tr𝑒−𝛽𝐻 = Tr
∏︁
𝑖

𝑇𝑙𝑖,𝑟𝑖,𝑢𝑖,𝑑𝑖 , (3)

where (𝑙𝑖, 𝑟𝑖, 𝑢𝑖, 𝑑𝑖), each taking values from 0 to 𝑞−1,
denote the bond indices linking site 𝑖 from (left, right,
up, down) directions, respectively. The local tensor 𝑇
is defined by

𝑇𝑙𝑟𝑢𝑑 =

√
𝜆𝑙𝜆𝑟𝜆𝑢𝜆𝑑

𝑞
𝛿mod(𝑙−𝑟+𝑢−𝑑,𝑞), (4)

where 𝜆𝑚 (𝑚 = 𝑙, 𝑟, 𝑢, 𝑑) are determined by the sin-
gular value decomposition of the Boltzmann weight

𝑒𝛽 cos(𝜃𝑖−𝜃𝑗) =
∑︁
𝑚

𝑈𝜃𝑖,𝑚𝜆𝑚𝑈*
𝜃𝑗 ,𝑚, (5)

and 𝑈𝜃𝑖,𝑚 = 𝑒𝑖𝑚𝜃𝑖 is a unitary matrix defined at site 𝑖.
𝜆𝑚 is the bond entanglement spectrum between sites
𝑖 and 𝑗,

𝜆𝑚 = 𝜆−𝑚 =
∑︁
𝜃𝑛

𝑒−𝑖𝑚𝜃𝑛𝑒𝛽cos𝜃𝑛 . (6)

On the other hand, the partition function can also
be written as a product of the Boltzmann weight on
all the constitutional small squares,

𝑍 = 𝑇𝑟
∏︁

⟨𝑖𝑗⟩∈�

𝑒−
1
2𝛽𝐻𝑖𝑗 . (7)

For a small square, we label the spin angles on its four
vertexes by 𝜃1, 𝜃2, 𝜃3 and 𝜃4 clockwise as shown in

Fig. 1(b). On its neighboring squares, we label their
vertexes anticlockwise. Then we introduce the follow-
ing dual spins on each plaquette:

𝜎1 =𝜃2 − 𝜃1,

𝜎2 =𝜃3 − 𝜃2,

𝜎3 =𝜃4 − 𝜃3,

𝜎4 =𝜃1 − 𝜃4.

These four dual variables 𝜎𝑖 are defined on four bonds
of each small square. They are not independent and
satisfy the constraint

mod(𝜎1 + 𝜎2 + 𝜎3 + 𝜎4, 2𝜋) = 0. (8)

In the dual lattice, the partition function can also be
written as a tensor-network model

𝑍 = Tr
∏︁
�

𝑇𝜎1𝜎2𝜎3𝜎4
, (9)

where 𝑇 is the local tensor defined at a vertex of the
dual lattice (Fig. 1(b)),

𝑇𝜎1𝜎2𝜎3𝜎4
= 𝑞

√︀
Λ𝜎1

Λ𝜎2
Λ𝜎3

Λ𝜎4
𝛿mod(

∑︀4
𝑖=1 𝜎𝑖,2𝜋)

, (10)

with Λ𝜎 = 𝑒𝛽cos𝜎 the corresponding bond entangle-
ment spectra in the dual lattice.

The above derivation indicates that the partition
function of the clock model is purely determined by
the bond entanglement spectra in both the original
and dual lattices. Thus the model will be dual to each
other if the normalized bond entanglement spectra at
an inverse temperature 𝛽1 in the original lattice are
equal to those at an inverse temperature 𝛽2 in the
dual lattice, namely,

𝜆𝑚 (𝛽1)

𝜆0 (𝛽1)
=

Λ𝑚 (𝛽2)

Λ0 (𝛽2)
, (𝑚 = 1, . . . , 𝑞 − 1). (11)

Setting 𝛽1 = 𝛽2 = 𝛽𝑐, we then obtain the self-dual
equation

𝜆𝑚 (𝛽𝑐)

𝜆0 (𝛽𝑐)
=

Λ𝑚 (𝛽𝑐)

Λ0 (𝛽𝑐)
, (𝑚 = 1, . . . , 𝑞 − 1). (12)

For a system with only one phase transition, the self-
dual solution 𝛽𝑐 is just the inverse critical tempera-
ture. On the other hand, if the system undergoes more
than one transition, 𝑇𝑐 = 1/𝛽𝑐 does not correspond to
any of the critical temperatures.

For the 𝑞-state clock model, it can be shown that
Eq. (12) has a unique solution when 2 ≤ 𝑞 ≤ 5. For
2 ≤ 𝑞 ≤ 4, the solution is given by

𝛽𝑐 =

⎧⎪⎨⎪⎩
1
2 ln

(︀√
2 + 1

)︀
, 𝑞 = 2,

2
3 ln

(︀√
3 + 1

)︀
, 𝑞 = 3,

ln
(︀√

2 + 1
)︀
, 𝑞 = 4.

(13)

For 𝑞 = 5, the self-dual point 𝛽𝑐 is determined by the
equation

𝑒5𝛽𝑐/4

cosh(
√
5𝛽𝑐/4)

=
√
5 + 1. (14)
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There is no analytic solution for this equation.
By solving this equation numerically, we find that
𝛽𝑐 ≈ 1.076318071604648. The above results agree
with those obtained by the conventional duality
method.[5,8] However, the five-state clock model has
two transition points. This self-dual solution 1/𝛽𝑐

does not correspond to either of the two transition
temperatures.
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Fig. 2. The entanglement spectra for the twelve-state
clock model in the original (red) and dual (blue) lattices.
Around the approximate self-dual point 𝛽𝑐 = 2.27868 (the
dashed black line), determined by the self-dual point of the
entanglement entropy (the inset), the bond entanglement
spectra 𝜆𝑚 in the original lattice are approximately de-
generate to Λ𝑚 in the dual lattice.

For the clock model with 𝑞 ≥ 6, there is no solution
to Eq. (12). However, we can define a bond entangle-
ment entropy via the normalized bond entanglement
spectra in the original and dual space, respectively,

𝑆(𝛽) =−
∑︁
𝑚

𝜆𝑚ln(𝜆𝑚), (15)

𝑆(𝛽) =−
∑︁
𝑚

Λ𝑚ln(Λ𝑚), (16)

where
∑︀

𝑚 𝜆𝑚 =
∑︀

𝑚 Λ𝑚 = 1. At the self-dual
point 𝛽𝑐, apparently 𝑆(𝛽𝑐) = 𝑆(𝛽𝑐). In the case
that Eq. (12) does not have a solution, we can still
use 𝑆(𝛽𝑐) = 𝑆(𝛽𝑐) to find an approximate self-dual
point, at which the bond entanglement spectra 𝜆𝑚

in the original lattice are approximately equal to the
spectra Λ𝑚 in the dual lattice. For the 𝑞-state clock
model, we find that this is indeed a good approxi-
mation. For example, the bond entanglement spectra
of the twelve-state clock model around this self-dual
point are approximately degenerate (Fig. 2). By solv-
ing numerically Eqs. (15) and (16), we can find approx-
imately the self-dual temperature 𝑇𝑐(𝑞) = 1/𝛽𝑐(𝑞) for
the 𝑞-state clock model with 𝑞 > 5. Figure 3 shows
the self-dual temperature 𝑇𝑐 as a function of 1/𝑞. In
the large 𝑞 limit, we find that 𝛽𝑐(𝑞) approaches to
𝛼+ 𝑞/2𝜋 with 𝛼 = 1/4 (see the inset of Fig. 3). Thus
in the limit 𝑞 → ∞, 𝛽𝑐(𝑞) ∼ 𝑞/2𝜋, consistent with the
result obtained from the bond-algebraic approach.[6]

The clock model of 𝑞 ≥ 5 undergoes two
phase transitions from high temperature to low

temperature.[6] The self-dual condition only provides
one constraint for the phase boundary, thus cannot
be used to determine the two critical points. As there
is no local order parameter to describe the interme-
diate KT phase, it is also difficult to determine the
critical points by calculating magnetization, specific
heat, or other thermodynamic quantities. To resolve
this difficulty, we utilize the HOTRG[24] to explore the
scaling behavior of the local tensors under the change
of length scales. From the critical behavior of the fixed
point tensor, we determine very accurately the criti-
cal points. The HOTRG handles directly an infinite
lattice. The results obtained with this method are not
affected by the finite lattice size effect.
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Fig. 3. The self-dual temperature, 𝑇𝑐 (blue circles), deter-
mined from the entanglement entropies of the local ten-
sors defined in the original and dual lattices, as a func-
tion of 1/𝑞. The red curve is the asymptotic function,
𝑓(𝑞) = 2𝜋/(𝑞 + 2𝜋𝛼), with 𝛼 = 1/4. The inset shows the
difference 𝛼 between the self-dual 𝛽𝑐 = 1/𝑇𝑐 and 𝑞/2𝜋.

The HOTRG is an efficient and flexible tensor
renormalization group method. It works in two or
higher dimensions. It has provided accurate results for
the two-dimensional 𝑋𝑌 model,[29] three-dimensional
Ising[24] and Potts models.[30] At each step of the
HOTRG iteration, an optimized isometric matrix is
determined by the higher-order singular value decom-
position to truncate the bond dimension of local ten-
sors. Eventually, each local tensor will flow to a cor-
responding fixed-point tensor. One can determine the
phase boundary from this fixed-point tensor by calcu-
lating the following gauge invariant quantity[25]

𝑋 =
(
∑︀

𝑟𝑢 𝑇𝑟𝑟𝑢𝑢)
2∑︀

𝑙𝑟𝑢𝑑 𝑇𝑟𝑙𝑢𝑑𝑇𝑙𝑟𝑑𝑢
, (17)

where 𝑋 is an effective measure of the degeneracy of
the phase.

For the 𝑞-state clock model, we find that 𝑋 equals
𝑞 in the low-temperature symmetry-breaking phase,
and 1 in the high-temperature disordered phase. In
the intermediate KT critical phase, 𝑋 takes values be-
tween 𝑞 and 1. 𝑋 exhibits two jumps at the two phase
boundaries, which can be used to determine the crit-
ical points. Figure 4 shows, as an example, the tem-
perature 𝑇 dependence of 𝑋 as well as the internal
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energy obtained by the HOTRG calculation with the
number of states retained at each bond 𝜒 = 12 for the
𝑞 = 6 clock model. From the critical behavior of 𝑋,
we find the lower and upper critical temperatures to
be 𝑇𝑐1 = 0.6658(5) and 𝑇𝑐2 = 0.8804(2), respectively.
The slops of the internal energy are slightly changed
around the jumps. These results are consistent with
other numerical calculations.[10−19] A comparison for
the lower and upper critical temperatures is shown in
Table 1.
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Fig. 4. Temperature dependence of parameter 𝑋 and the
internal energy 𝐸 for the six-state clock model. 𝑋 ex-
hibits two jumps at the lower and upper critical tempera-
tures, 𝑇𝑐1 = 0.6658(5) and 𝑇𝑐2 = 0.8804(2), respectively.
The results are obtained using the HOTRG method with
the maximal bond dimension retained for the local tensors
𝜒 = 12.

Table 1. Comparison of the lower and upper critical tempera-
tures 𝑇𝑐1 and 𝑇𝑐2 obtained by different methods for the six-state
clock model.

𝑇𝑐1 𝑇𝑐2

Tobochnik[10](1982) 0.6 1.3
Challa and Landau[11](1986) 0.68(2) 0.92(1)
Yamagata and Ono[12](1991) 0.68 0.90
Tomita and Okabe[13](2002) 0.7014(11) 0.9008(6)
Hwang[14](2009) 0.632(2) 0.997(2)
Brito et al.[15](2010) 0.68(1) 0.90(1)
Baek et al.[16](2013) 0.9020(5)
Kumano et al.[17](2013) 0.700(4) 0.904(5)
Krčmár et al.[18](2016) 0.70 0.88
This work 0.6658(5) 0.8804(2)

In summary, we have proposed a simple tensor-
network scheme to analyze the duality properties of
the ferromagnetic 𝑞-state clock model, and calculate
the critical temperatures using the HOTRG method.
From the entanglement spectra of the local tensors
in the original and dual lattices, we show that there
is a self-dual point for the system with 𝑞 ≤ 5. The
self-dual inverse temperatures obtained for the 𝑞 ≤ 5
models agree with the exact results previously known.

For the model with 𝑞 ≥ 6, there is no self-dual point
in the entanglement spectra. However, we find that
the entanglement spectra are approximately self-dual
at the self-dual point of the entanglement entropy. We
use this self-dual point of the entanglement entropy as
an approximate self-dual point for the partition func-
tion. In the large 𝑞 limit, this approximate self-dual
point 𝛽𝑐 scales as 𝑞/(2𝜋 + 1/4), consistent with the
result obtained from the bond-algebraic approach.[6]
We calculate the critical temperatures for the six-state
clock model from the fixed-point tensor obtained by
the HOTRG method. Our results are consistent with
other numerical calculations.

References
[1] Berezinskii V L 1971 Sov. Phys. JETP 32 493
[2] Kosterlitz J M and Thouless D J 1972 J. Phys. C 5 L124
[3] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
[4] José J V, Kadanoff L P, Kirkpatrick S and Nelson D R 1977

Phys. Rev. B 16 1217
[5] Potts R B 1952 Math. Proc. Camb. Phil. Soc. 48 106
[6] Ortiz G, Cobanera E and Nussinov Z 2012 Nucl. Phys. B

854 780
[7] Cardy J L 1980 J. Phys. A 13 1507
[8] Alcaraz F C and Koberle R 1980 J. Phys. A 13 L153
[9] Lapilli C M, Pfeifer P and Wexler C 2006 Phys. Rev. Lett.

96 140603
[10] Tobochnik J 1982 Phys. Rev. B 26 6201
[11] Challa M S S and Landau D P 1986 Phys. Rev. B 33 437
[12] Yamagata A and Ono I 1991 J. Phys. A 24 265
[13] Tomita Y and Okabe Y 2002 Phys. Rev. B 65 184405
[14] Hwang C O 2009 Phys. Rev. E 80 042103
[15] Brito A F, Redinz J A and Plascak J A 2010 Phys. Rev. E

81 031130
[16] Baek S K and Minnhagen P 2010 Phys. Rev. E 82 031102
[17] Kumano Y, Hukushima K, Tomita Y and Oshikawa M 2013

Phys. Rev. B 88 104427
[18] Krcmar R, Gendiar A and Nishino T 2016

arXiv:1612.07611v1[cond-mat.stat-mech]
[19] Chatelain C 2014 J. Stat. Mech.: Theory Experiment 2014

P11022
[20] Vidal G 2003 Phys. Rev. Lett. 91 147902
[21] Levin M and Nave C P 2007 Phys. Rev. Lett. 99 120601
[22] Xie Z Y, Jiang H C, Chen Q N, Weng Z Y and Xiang T

2009 Phys. Rev. Lett. 103 160601
[23] Zhao H H, Xie Z Y, Chen Q N, Wei Z C, Cai J W and

Xiang T 2010 Phys. Rev. B 81 174411
[24] Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang

T 2012 Phys. Rev. B 86 045139
[25] Gu Z C and Wen X G 2009 Phys. Rev. B 80 155131
[26] Evenbly G and Vidal G 2016 Phys. Rev. Lett. 116 040401
[27] Yang S, Gu Z C and Wen X G 2017 Phys. Rev. Lett. 118

110504
[28] Kramers H A and Wannier G H 1941 Phys. Rev. 60 252
[29] Yu J F, Xie Z Y, Meurice Y, Liu Y, Denbleyker A, Zou H,

Qin M P, Chen J and Xiang T 2014 Phys. Rev. E 89 013308
[30] Wang S, Xie Z Y, Chen J, Bruce N and Xiang T 2014 Chin.

Phys. Lett. 31 070503

050503-4

http://cpl.iphy.ac.cn
http://dx.doi.org/10.1088/0022-3719/5/11/002
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1103/PhysRevB.16.1217
http://dx.doi.org/10.1103/PhysRevB.16.1217
http://dx.doi.org/10.1017/S0305004100027419
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.012
http://dx.doi.org/10.1088/0305-4470/13/4/037
http://dx.doi.org/10.1088/0305-4470/13/5/008
http://dx.doi.org/10.1103/PhysRevLett.96.140603
http://dx.doi.org/10.1103/PhysRevLett.96.140603
http://dx.doi.org/10.1103/PhysRevB.26.6201
http://dx.doi.org/10.1103/PhysRevB.33.437
http://dx.doi.org/10.1088/0305-4470/24/1/033
http://dx.doi.org/10.1103/PhysRevB.65.184405
http://dx.doi.org/10.1103/PhysRevE.80.042103
http://dx.doi.org/10.1103/PhysRevE.81.031130
http://dx.doi.org/10.1103/PhysRevE.81.031130
http://dx.doi.org/10.1103/PhysRevE.82.031102
http://dx.doi.org/10.1103/PhysRevB.88.104427
http://dx.doi.org/10.1103/PhysRevB.88.104427
http://arxiv.org/abs/1612.07611v1
http://arxiv.org/abs/1612.07611v1
http://dx.doi.org/10.1088/1742-5468/2014/11/P11022
http://dx.doi.org/10.1088/1742-5468/2014/11/P11022
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://dx.doi.org/10.1103/PhysRevLett.103.160601
http://dx.doi.org/10.1103/PhysRevB.81.174411
http://dx.doi.org/10.1103/PhysRevB.86.045139
http://dx.doi.org/10.1103/PhysRevB.80.155131
http://dx.doi.org/10.1103/PhysRevLett.116.040401
http://dx.doi.org/10.1103/PhysRevLett.118.110504
http://dx.doi.org/10.1103/PhysRevLett.118.110504
http://dx.doi.org/10.1103/PhysRev.60.252
http://dx.doi.org/10.1103/PhysRevE.89.013308
http://dx.doi.org/10.1088/0256-307X/31/7/070503
http://dx.doi.org/10.1088/0256-307X/31/7/070503

	Title
	Eq. (1)
	Eq. (2)
	Fig. 1
	Eq. (3)
	Eq. (4)
	Eq. (5)
	Eq. (6)
	Eq. (7)
	Eq. (8)
	Eq. (9)
	Eq. (10)
	Eq. (11)
	Eq. (12)
	Eq. (13)
	Eq. (14)
	Fig. 2
	Eq. (15)
	Eq. (16)
	Fig. 3
	Eq. (17)
	Fig. 4
	Table-1
	References

