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Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet *
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An analysis is made to study boundary layer flow and heat transfer over an exponentially shrinking sheet. Using
similarity transformations in exponential form, the governing boundary layer equations are transformed into
self-similar nonlinear ordinary differential equations, which are then solved numerically using a very efficient
shooting method. The analysis reveals the conditions for the existence of steady boundary layer flow due to
exponential shrinking of the sheet and it is found that when the mass suction parameter exceeds a certain critical
value, steady flow is possible. The dual solutions for velocity and temperature distributions are obtained. With
increasing values of the mass suction parameter, the skin friction coefficient increases for the first solution and
decreases for the second solution.
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Viscous boundary layer flow due to a stretch-
ing/shrinking sheet is very significant due to its huge
applications in many manufacturing processes in in-
dustry, such as the extraction of polymer sheets, paper
production, hot rolling and glass-fiber production.[1,2]

Crane[3] first investigated the steady boundary layer
flow of an incompressible viscous fluid over a linearly
stretching plate and gave an exact similarity solution
in a closed analytical form. The work of Crane[3] was
extended by Gupta and Gupta,[4] Chen and Char,[5]

and Pavlov[6] under various physical conditions. In ad-
dition, Sankara and Watson[7] investigated the flow of
micropolar fluids past a stretching sheet. Andersson
and Dandapat[8] demonstrated the flow of a power-
law fluid over a stretching sheet. Vajravelu[9] and
Cortell[10,11] discussed boundary layer flows over a
nonlinear stretching sheet.

The development of the unusual type of flow due
to shrinking was first observed by Wang[12] when he
was investigating the behaviour of a liquid film on
an unsteady stretching sheet. Later, Miklavc̆ic̆ and
Wang[13] established the criteria for the existence and
uniqueness of the similarity solution of the equation
for the flow due to a shrinking sheet and found that
the flow depends on externally imposed mass suction.
Hayat et al.[14] reported an analytic solution of mag-
netohydrodynamic (MHD) flow of a second grade fluid
over a shrinking sheet. Hayat et al.[15] also obtained
an analytical solution of the MHD rotating flow of
a second grade fluid past a porous shrinking sheet
by the homotopy analysis method (HAM). In another
paper, Hayat et al.[16] discussed the mass transfer in
a steady two-dimensional MHD boundary layer flow
of an upper-convected Maxwell fluid past a porous
shrinking sheet in the presence of a chemical reaction,
and the expressions for the velocity and the concen-

tration distributions were obtained using HAM. Fang
and Zhang[17] found a closed-form exact solution for
two-dimensional MHD flow over a porous shrinking
sheet subjected to wall mass transfer. Noor et al.[18]

reported a series solution of MHD viscous flow due
to a shrinking sheet using the Adomian decomposi-
tion method (ADM). Fang et al.[19] solved analytically
the viscous flow over a porous shrinking sheet with
a second order slip flow model. Cortell[20] discussed
the MHD viscous flow caused by a shrinking sheet
with suction for two-dimensional and axisymmetric
cases. Fang et al.[21] studied unsteady viscous flow
over a shrinking surface with mass suction. The un-
steady boundary layer flow of an electrically conduct-
ing fluid on a shrinking surface with a constant trans-
verse magnetic field was investigated by Merkin and
Kumaran.[22] Wang[23] investigated the stagnation-
point flow towards a shrinking sheet for both two-
dimensional and axisymmetric cases. Wang’s[23] work
was extended by Ishak et al.,[24] Bhattacharyya and
Layek,[25] and Bhattacharyya et al.[26]

Over the last few decades, in almost all investi-
gations on the flow past a stretching sheet, the flow
occurs because of the linear stretching velocity of the
flat sheet. However, the boundary layer flow induced
by an exponentially stretching/shrinking sheet is not
studied much, though it is very important and re-
alistic flow frequently appears in many engineering
processes. Magyari and Keller[27] first considered the
boundary layer flow due to an exponentially stretch-
ing sheet and he also investigated the heat transfer
in the flow taking an exponentially varying wall tem-
perature. Elbashbeshy[28] numerically examined the
flow and heat transfer over an exponentially stretch-
ing surface considering wall mass suction. Khan and
Sanjayanand[29] studied the flow of viscoelastic fluid
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and heat transfer over an exponentially stretching
sheet with viscous dissipation effect. Partha et al.[30]

obtained a similarity solution for mixed convection
flow past an exponentially stretching surface by tak-
ing into account the influence of viscous dissipation on
the convective transport. Sanjayanand and Khan[31]

discussed the effects of heat and mass transfer on the
boundary layer flow of viscoelastic fluid. Al-Odat et
al.[32] explained the effect magnetic field on thermal
boundary layer on an exponentially stretching con-
tinuous surface with an exponential temperature dis-
tribution. Recently, Sajid and Hayat[33] showed the
influence of thermal radiation on the boundary layer
flow past an exponentially stretching sheet and they
reported a series solutions for velocity and tempera-
ture using HAM.

However, the flow dynamics due to an exponen-
tially shrinking sheet is still unknown. Thus, in
this Letter, we investigate the boundary layer flow
and heat transfer over an exponentially shrinking
sheet. Using an exponential form of similarity trans-
formation, the governing equations are transformed
into self-similar ordinary differential equations. Then
those nonlinear self-similar equations are solved nu-
merically using the shooting method and the flow
characteristics are discussed.

Consider the steady two-dimensional boundary
layer flow of a Newtonian fluid and heat transfer over
an exponentially shrinking sheet. The governing equa-
tions of motion and the energy equation may be writ-
ten in usual notation as
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where 𝑢 and 𝑣 are the velocity components in 𝑥- and
𝑦-directions, respectively, 𝜐(= 𝜇/𝜌) is the kinematic
fluid viscosity, 𝜌 is the fluid density, 𝜇 is the coeffi-
cient of fluid viscosity, 𝑇 is the temperature, 𝜅 is the
fluid thermal conductivity and 𝑐𝑝 is the specific heat.

The boundary conditions are given by

𝑢 = 𝑈𝑤(𝑥), 𝑣 = 𝑣𝑤 at 𝑦 = 0; 𝑢→ 0 as 𝑦 → ß, 𝑛𝑓𝑡𝑦,
(4)

𝑇 = 𝑇𝑤 =𝑇∞ + 𝑇0 exp( 𝑥
2𝐿 ) at 𝑦 = 0;

𝑇 → 𝑇∞ as 𝑦 → ∞, (5)

where 𝑇𝑤 is the variable temperature at the sheet,
𝑇∞ is the free stream temperature assumed to be con-
stant and 𝑇0 is a constant which measures the rate of
temperature increase along the sheet. The shrinking
velocity 𝑈𝑤 is given by

𝑈𝑤(𝑥) = −𝑐 exp( 𝑥
𝐿 ), (6)

where 𝑐 > 0 is shrinking constant.
Here 𝑣𝑤 is the variable wall mass transfer velocity

given by
𝑣𝑤 = 𝑣0 exp( 𝑥

2𝐿 ), (7)

where 𝑣0 is a constant with 𝑣0 < 0 for mass suction
and 𝑣0 > 0 for mass injection.

Now, the stream function 𝜓(𝑥, 𝑦) is introduced as

𝑢 =
𝜕𝜓

𝜕𝑦
and 𝑣 = −𝜕𝜓

𝜕𝑥
. (8)

For relations in Eq. (8), the continuity equation (1) is
identically satisfied, the momentum equation (2) and
the temperature equation (3) are reduced to the forms
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The boundary conditions in Eq. (4) for the velocity
components become

𝜕𝜓

𝜕𝑦
= 𝑈𝑤(𝑥),

𝜕𝜓

𝜕𝑥
= − 𝑣𝑤 at 𝑦 = 0;

𝜕𝜓

𝜕𝑦
→ 0 as 𝑦 → ∞.

(11)

The dimensionless variables for 𝜓 and 𝑇 read[29,31]

𝜓 =
√

2𝜐𝐿𝑐 𝑓(𝜂) exp( 𝑥
2𝐿 ), 𝑇 = 𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃(𝜂) ,

(12)

where 𝜂 is the similarity variable defined as 𝜂 =
𝑦
√︀

𝑐
2𝜐𝐿 exp( 𝑥

2𝐿 ).
Using the relations in Eq. (12) we finally obtain the

nonlinear self-similar equations

𝑓 ′′′ + 𝑓𝑓 ′′ − 2𝑓 ′2 = 0, (13)

𝜃′′ + 𝑃𝑟(𝑓𝜃′ − 𝑓 ′𝜃) = 0, (14)

where 𝑃𝑟 = 𝜇𝑐𝑝/𝜅 is the Prandtl number.
The boundary conditions (11) and (5) reduce to

the forms

𝑓(𝜂) = 𝑆, 𝑓 ′(𝜂) = −1 at 𝜂 = 0;

𝑓 ′(𝜂) → 0 as 𝜂 → ∞, (15)

𝜃(𝜂) = 1 at 𝜂 = 0; 𝜃(𝜂) → 0 as 𝜂 → ∞, (16)

where 𝑆 = −𝑣0
⧸︀√︀

𝜐𝑐
2𝐿 is the mass transfer parameter.

𝑆 > 0 (𝑣0 < 0) corresponds mass suction and 𝑆 < 0
(𝑣0 > 0) corresponds to the mass injection.

The nonlinear coupled differential Eqs. (13) and
(14), along with the boundary conditions (15) and
(16), form a two-point boundary value problem (BVP)
and is solved using the shooting method, by converting
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it into an initial value problem (IVP). In this method
we have to choose a suitable finite value of 𝜂 → ∞,
say 𝜂∞. We set the following first-order system

𝑓 ′ = 𝑝, 𝑝′ = 𝑞, 𝑞′ = 2𝑝2 − 𝑓𝑞, (17)

𝜃′ = 𝑧, 𝑧′ = −𝑃𝑟(𝑓𝑧 − 𝑝𝜃), (18)

under the boundary conditions

𝑓(0) = 𝑆, 𝑝(0) = −1, 𝜃(0) = 1. (19)

To solve Eqs. (17) and (18) with Eq. (19) as an IVP we
need the values for 𝑞(0) i.e. 𝑓 ′′(0) and 𝑧(0), i.e. 𝜃′(0)
but no such values are given. The initial guess values
for 𝑓 ′′(0) and 𝜃′(0) are chosen and the fourth order
Runge–Kutta method is applied to obtain a solution.
Then we compare the calculated values of 𝑓 ′(𝜂) and
𝜃(𝜂) at 𝜂∞(= 40) under the given boundary condi-
tions 𝑓 ′(𝜂∞) = 0 and 𝜃(𝜂∞) = 0 and adjust the values
of 𝑓 ′′(0) and 𝜃′(0) using the Secant method to give
abetter approximation for the solution. The step-size
is taken as ∆𝜂 = 0.01. The process is repeated until
we obtain results correct up to the desired accuracy of
the 10−7 level, which fulfills the convergence criterion.
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Fig. 1. Skin friction coefficient 𝑓 ′′(0) for various values of
𝑆.
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Fig. 2. Temperature gradient at the sheet −𝜃′(0) for var-
ious values of 𝑆.
Numerical computations are carried out for obtain-

ing the condition under which the steady flow over an
exponentially shrinking sheet is possible. The shrink-
ing rate in the exponential case is much faster than
that of the linear case. Thus, the amount of vortic-
ity generated due to exponential shrinking is greater
than that of linear shrinking. The flow due to lin-
ear shrinking was studied by Miklavčič and Wang,[13]

and Fang and Zhang[17] (with MHD effect). Accord-
ing to their analyses the steady two-dimensional flow

of Newtonian fluids due to a shrinking sheet with wall
mass transfer will appear only when the mass suc-
tion parameter is greater than or equal to 2. How-
ever, for the exponential shrinking flow that amount
of mass suction is not sufficient for steady flow, from
this investigation it is found that if the mass suction
parameter is greater than or equal to 2.266684, then
only the steady flow due to an exponentially shrinking
sheet is possible. This is compatible with the physics
of the flow. Hence, to keep the larger amount of vor-
ticity generated due to exponential shrinking inside
the boundary layer flow needs more mass suction than
the linear case. Thus, for an exponentially shrinking
sheet, the similarity solution exists when the mass suc-
tion parameter 𝑆 satisfies the condition 𝑆 ≥ 2.266684
and consequently for 𝑆 < 2.266684 the flow has no
similarity solution. Moreover, for 𝑆 ≥ 2.266684 dual
similarity solutions are obtained. In this regard, the
values of the skin friction coefficient 𝑓 ′′(0) for different
values of 𝑆 are depicted in Fig. 1. The values of tem-
perature gradient at the sheet −𝜃′(0) which are pro-
portional to the rate of heat transfer from the sheet
are plotted in Fig. 2 for different values of the mass
suction parameter. Furthermore, from those two fig-
ures it is also observed that the skin friction coefficient
𝑓 ′′(0) increases with 𝑆 for the first solution and it de-
creases for the second solution. The value of −𝜃′(0)
shows the nature similar to the skin friction coefficient
for the first solution, but for the second though it ini-
tially decreases with increasing 𝑆, for large values of
𝑆 it starts to increase again.
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Fig. 3. Dual velocity profiles 𝑓 ′(𝜂) for various values of
𝑆.
The variations in velocity profiles and shear stress

profiles for different values of mass suction parame-
ter 𝑆 are demonstrated in Figs. 3 and 4, respectively.
It is seen that the momentum boundary layer thick-
ness for the first solution is always thinner than that
of the second solution. Figure 3 also shows that the
dimensionless velocity profile 𝑓 ′(𝜂) increases with the
increasing values of 𝑆 for first solution and the veloc-
ity decreases with 𝑆 for the second solution. On the
other hand, for the first solution the value of the shear
stress profile at first increases with increasing 𝑆, but
for large 𝜂 it decreases and reverse nature is noticed
for the case of the second solution. In Fig. 5, the dual
temperature profiles 𝜃(𝜂) are exhibited for various val-
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ues of 𝑆. The temperature at a point decreases for an
increase of 𝑆 for the first solution, while for the second
solution the temperature increases with 𝑆. Similar to
the velocity field, the thermal boundary layer thick-
ness for the second solution is thicker than that of the
first solution.
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Fig. 4. Shear stress profiles 𝑓 ′′(𝜂) for various values of 𝑆.
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Fig. 5. Dual temperature profiles 𝜃(𝜂) for various values
of 𝑆.
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Fig. 6. Dual temperature profiles 𝜃(𝜂) for several values
of 𝑃𝑟.

Finally, the effects of the Prandtl number 𝑃𝑟 on
the dimensionless temperature profiles are presented
in Fig. 6. For both solutions, the temperature at a
point is found to decrease with the increasing 𝑃𝑟.
Also, the thermal boundary layer thickness reduces
significantly due to increase of 𝑃𝑟 for both the cases.
The Prandtl number is inversely proportional to the
thermal conductivity. Thus the fluids with the lower
Prandtl number have higher thermal conductivities
and consequently the heat diffusion is faster in this
case. On the other hand, for higher 𝑃𝑟 fluids the heat
diffusion slows down.

The boundary layer flow and heat transfer over
an exponentially shrinking sheet is investigated. The

similarity equations are obtained and solved numer-
ically by the shooting method. The study reveals
that the steady flow due to an exponentially shrinking
sheet is possible only when the mass suction param-
eter 𝑆 ≥ 2.266684, and dual similarity solutions for
velocity field and temperature distribution are found.
In addition, for the first solution the velocity increases
with mass suction and decreases for the second solu-
tion. The opposite behavior is observed in the temper-
ature distribution for increment of suction. For both
solutions, the thermal boundary layer thickness be-
comes thinner due to the increasing Prandtl number.
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