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We study a generalized nonlinear KdV system is studied by using the homotopic mapping method. Firstly, a

homotopic mapping transform is constructed; secondly, the suitable initial approximation is selected; then the

homotopic mapping is used. The accuracy of the approximate solution for the solitary wave is obtained. From

the obtained approximate solution, the homotopic mapping method exhibits a good accuracy.
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Solitons and chaos are two most important no-
tions of nonlinear science, which have been widely ap-
plied in natural sciences such as chemistry, biology,
mathematics, communication, and particularly in al-
most all branches of physics such as fluid dynamics,
plasma, field theory, optics, condensed matter.[1−6]

Recently, more new methods are appeared, for exam-
ple, method of hyperbolic tangent function, homoge-
neous equilibrium method, method of Jacobi elliptic
function, method of auxiliary equation, etc.[7,8] Many
scholars have carried out a great deal of work, for ex-
ample, shock wave, scattering light wave, quantum
mechanics, atmospheric physics, network of neurons
and so on have been studied for the theorem of solitary
wave.[9−11] The asymptotic method for nonlinear the-
ory of solitary wave is a new study. The main essential
of this method is that studied nonlinear problems deal
with linear problems by using the asymptotic expan-
sion. The homotopic mapping method[12,13] is such a
new method.

In the past decade, many approximate methods
for the nonlinear problem have been developed and
refined, including the method of averaging, boundary
layer method, methods of matched asymptotic expan-
sion and multiple scales. Recently, many scholars such
as Ni and Wei,[14] Bartier,[15] Llibre and de Silva[16]

and Guarguaglini and Natalini[17] have carried out a
great deal of work. Using the method of differential
inequalities and others, researchers also considered a
class of reaction diffusion problems,[18] activator in-
hibitor systems,[19] ecological environment,[20] shock
wave,[21] soliton wave,[22,23] laser pulse,[24] ocean
science,[25,26] atmospheric physics,[27−30] etc. In this

Letter, we consider a class of generalized nonlinear
KdV systems, and obtain approximate solution of soli-
tary wave.

Consider the following generalized nonlinear KdV
system:[31]

𝜕𝑢

𝜕𝑡
− 𝜕3𝑢

𝜕𝑥𝜕𝑦2
− 2𝑎𝑢

𝜕𝑣

𝜕𝑦
− 𝑎𝑣

𝜕𝑢

𝜕𝑦
= 𝑓(𝑢, 𝑣), (1)

𝜕𝑢

𝜕𝑥
− 𝜕𝑣

𝜕𝑦
= 0, (2)

where 𝑎 is a constant, 𝑓(𝑢, 𝑣) is a sufficiently smooth
function with its arguments.

From the KdV system (1)–(2) as 𝑓(𝑢, 𝑣) = 0 and
letting 𝑢 = 𝑤𝑦, 𝑣 = 𝑤𝑥, we have

𝜕2𝑤

𝜕𝑡𝜕𝑦
− 𝜕4𝑤

𝜕𝑥𝜕𝑦3
− 2𝑎

𝜕𝑤

𝜕𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝑎

𝜕𝑤

𝜕𝑥

𝜕2𝑤

𝜕𝑦2
= 0. (3)

Now we first search the solitary wave solution for
Eq. (3) by using the method in Ref. [31].

Assume that the solution 𝑤 of Eq. (3) reads

𝑤 = 𝐴(𝑡, 𝑦) + 𝐵(𝑡, 𝑥, 𝑦)𝜑(𝑧), (4)

𝜑′ = 𝜑2, (5)

where 𝐴, 𝐵, 𝑧 and 𝜑 are to be determined functions
and the prime denotes the first derivative with respect
to 𝑧.

From Eqs. (4) and (5), we have
𝑤𝑥 = 𝐵𝑥𝜑 + 𝐵𝑧𝑥𝜑2, 𝑤𝑦 = 𝐴𝑦 + 𝐵𝑦𝜑 + 𝐵𝑧𝑦𝜑2,

𝑤𝑡 = 𝐴𝑡 + 𝐵𝑡𝜑 + 𝐵𝑧𝑡𝜑
2, (6)

𝑤𝑥𝑦 = 𝐵𝑥𝑦𝜑 + (𝐵𝑥𝑧𝑦 + (𝐵𝑧𝑥)𝑦)𝜑2 + 2𝐵𝑧𝑥𝑧𝑦𝜑3, (7)

𝑤𝑦𝑦 = 𝐵𝑦𝑦𝜑 + (𝐵𝑦𝑧𝑦 + (𝐵𝑧𝑦)𝑦)𝜑2 + 2𝐵𝑧2
𝑦𝜑3, (8)

𝑤𝑡𝑦 =𝐴𝑡𝑦 +𝐵𝑡𝑦𝜑+(𝐵𝑡𝑧𝑦 +(𝐵𝑧𝑡)𝑦)𝜑2+2𝐵𝑧𝑡𝑧𝑦𝜑3, (9)
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𝑤𝑥𝑦𝑦𝑦 = 𝐵𝑥𝑦𝑦𝑦𝜑 + (𝐵𝑥𝑦𝑦𝑧𝑦 + (𝐵𝑦𝑦𝑧𝑥)𝑦

+ (𝐵𝑦𝑧𝑦 + (𝐵𝑧𝑦)𝑦)𝑥𝑦)𝜑2

+ (2𝐵𝑦𝑦𝑧𝑥𝑧𝑦 + 2((𝐵𝑦𝑧𝑦 + (𝐵𝑧𝑦)𝑦)𝑥𝑧𝑦

+ 2(𝐵𝑦𝑧𝑥𝑧𝑦 + (𝐵𝑧𝑦)𝑦𝑧𝑥)𝑦 + 2(𝐵𝑧2
𝑦)𝑥𝑦)𝜑3

+ 6(𝐵𝑦𝑧𝑥𝑧2
𝑦 + (𝐵𝑧𝑦)𝑦𝑧𝑥𝑧𝑦 + (𝐵𝑧2

𝑦)𝑥𝑧𝑦

+ (𝐵𝑧2
𝑦𝑧𝑥)𝑦)𝜑4 + 24𝐵𝑧3

𝑦𝑧𝑥𝜑5. (10)

To determine 𝑤 explicitly, we can substitute Eqs. (6)–
(10) into Eq. (3) and collect coefficients of polynomials
of 𝜑 and set each coefficient to be zero, then we can
obtain

𝐴 = − 1
2𝑎

∫︁
1

𝑧𝑥𝑧2
𝑦

[︀
− 2𝑧𝑥𝑦𝑦𝑧2

𝑦 − 2𝑧𝑥𝑧𝑦𝑧𝑦𝑦𝑦

+ 2𝑧𝑥𝑦𝑧𝑦𝑧𝑦𝑦 + 𝑧𝑥𝑧2
𝑦𝑦 + 𝑧𝑡𝑧

2
𝑦

]︀
𝑑𝑥, (11)

𝐵 = −4𝑧𝑦/𝑎, (12)

𝜑 = −1/𝑧. (13)

𝑧 = 𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡), (14)

where 𝐹 and 𝐺 are two arbitrary separation func-
tions 𝑦 and 𝑥− 𝑐𝑡 with constant 𝑐, respectively. From
Eqs. (4), (11)–(14) and 𝑢 = 𝑤𝑦, 𝑣 = 𝑤𝑥, it is easy to
see that we can derive the following soliton wave of
system (1)–(2) as 𝑓(𝑢, 𝑣) = 0:

𝑢̄(𝑡, 𝑥, 𝑦) =
𝐹 2

𝑦𝑦(𝑦)− 𝑐𝐹 2
𝑦 (𝑦)− 2𝐹𝑦(𝑦)𝐹𝑦𝑦𝑦(𝑦)
2𝑎𝐹 2

𝑦 (𝑦)

+
4𝐹𝑦𝑦(𝑦)

𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))

−
4𝐹 2

𝑦 (𝑦)
𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))2

, (15)

𝑣(𝑡, 𝑥, 𝑦) =
−4𝐹𝑦(𝑦)𝐺𝑥(𝑥− 𝑐𝑡)

𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))2
. (16)

Now we consider the generalized nonlinear KdV sys-
tem (1)–(2). Introducing a homotopic mapping
𝐻𝑖(𝑢, 𝑣, 𝑝) : 𝑅2 × 𝐼 → 𝑅 (𝑖 = 1, 2):

𝐻1(𝑢, 𝑣, 𝑝) = 𝐿1[𝑢]− 𝐿1[𝑢̄] + 𝑝(𝐿1[𝑢̄]− 2𝑎𝑢𝑣𝑦

− 𝑎𝑣𝑢𝑦 − 𝑓(𝑢, 𝑣)), (17)

𝐻2(𝑢, 𝑣, 𝑝) = 𝐿2[𝑢, 𝑣] + (𝑝− 1)𝐿2[𝑢̄, 𝑣], (18)

where 𝑅 = (−∞, +∞), 𝐼 = [0, 1], (𝑢̄, 𝑣) is a set of
initial approximation of system (1)–(2) and the linear
operators 𝐿𝑖(𝑖 = 1, 2) are

𝐿1[𝑢] =
𝜕𝑢

𝜕𝑡
− 𝜕3𝑢

𝜕𝑥𝜕𝑦2
, 𝐿2[𝑢, 𝑣] =

𝜕𝑢

𝜕𝑥
− 𝜕𝑣

𝜕𝑦
.

We now select initial approximation (𝑢̄, 𝑣) of system
(1)–(2), which satisfies

𝐿1[𝑢̄] = 2𝑎𝑢̄
𝜕𝑣

𝜕𝑦
+ 𝑎𝑣

𝜕𝑢̄

𝜕𝑦
, (19)

𝐿2[𝑢̄, 𝑣] = 0. (20)

From the above discussion, a set of solution (𝑢̄, 𝑣)
of the system (19)–(20) can be expressed by Eqs. (15)
and (16).

Obviously, from mapping (17) and (18),
𝐻𝑖(𝑢, 𝑣, 1) = 0 (𝑖 = 1, 2) are the same as Eqs. (1) and
(2). Thus the solution (𝑢, 𝑣) of the system (1)–(2) is
the same as the solution of 𝐻𝑖(𝑢, 𝑣, 𝑝) = 0 (𝑖 = 1, 2)
as 𝑝→ 1.

Let

𝑢 =
∞∑︁

𝑖=0

𝑢𝑖(𝑡, 𝑥, 𝑦)𝑝𝑖, 𝑣 =
∞∑︁

𝑖=0

𝑣𝑖(𝑡, 𝑥, 𝑦)𝑝𝑖. (21)

Substituting Eq. (21) into Eqs. (17) and (18), compar-
ing the coefficients of Eq. 𝐻𝑖(𝑢, 𝑣, 𝑝) = 0 (𝑖 = 1, 2)
for the same powers in 𝑝, from the coefficients zeroth
order power in 𝑝 for 𝐻𝑖(𝑢, 𝑣, 𝑝) = 0 we have

𝐿1[𝑢0] = 𝐿1[𝑢̄], 𝐿2[𝑢0, 𝑣0] = 𝐿2[𝑢̄, 𝑣]. (22)

We now select a set of (𝑢0, 𝑣0) to be (𝑢̄0, 𝑣0). Then
from Eqs. (19), (20), (15), and (16), we can obtain

𝑢0(𝑡, 𝑥, 𝑦) =
𝐹 2

𝑦𝑦(𝑦)− 𝑐𝐹 2
𝑦 (𝑦)− 2𝐹𝑦(𝑦)𝐹𝑦𝑦𝑦(𝑦)
2𝑎𝐹 2

𝑦 (𝑦)

+
4𝐹𝑦𝑦(𝑦)

𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))

−
4𝐹 2

𝑦 (𝑦)
𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))2

, (23)

𝑣0(𝑡, 𝑥, 𝑦) =
−4𝐹𝑦(𝑦)𝐺𝑥(𝑥− 𝑐𝑡)

𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))2
. (24)

From the coefficient first order power in 𝑝 for
𝐻𝑖(𝑢, 𝑣, 𝑝) = 0 (𝑖 = 1, 2), we have

𝐿1[𝑢1] = 𝑓(𝑢0, 𝑣0), (25)

𝐿2[𝑢1, 𝑣1] = 0, (26)

where 𝑢0 and 𝑣0 are represented by Eqs. (23) and (24),
respectively. Using the Fourier transform method, a
set of solution of system (25)–(26) with zero initial
value will read

𝑢1(𝑡, 𝑥, 𝑦) =
1

4𝜋2

∫︁ 𝑡

0

𝑑𝑡1

∫︁ ∞

−∞

∫︁ ∞

−∞
𝑓
(︀
𝑢0(𝜏, 𝜉, 𝜂),

𝑣0(𝜏, 𝜉, 𝜂)
)︀
· 𝐹1(𝑡, 𝑥, 𝑦; 𝜏, 𝜉, 𝜂)𝑑𝜉𝑑𝜂𝑑𝜏, (27)

𝑣1(𝑡, 𝑥, 𝑦) =
1

4𝜋2

∫︁ 𝑡

0

𝑑𝑡1

∫︁ ∞

−∞

∫︁ ∞

−∞

∫︁ 𝑦

−∞

[︀
𝑓
(︀
𝑢0(𝜏, 𝜉, 𝜂),

𝑣0(𝜐, 𝜉, 𝜂)
)︀
· 𝐹1(𝑡1, 𝑥, 𝑦1𝜏, 𝜉, 𝜂)

]︀
𝜉

· 𝑑𝑦1𝑑𝜉𝑑𝜂𝑑𝜏, (28)

where

𝐹1(𝑡, 𝑥, 𝑦, ; 𝜏, 𝜉, 𝜂) =
∫︁ ∞

−∞

∫︁ ∞

−∞
exp

(︀
− 𝑖(𝜆1𝜆

2
2(𝑡− 𝜏)

− 𝜆1(𝑥− 𝜉)− 𝜆2(𝑦 − 𝜂))
)︀
𝑑𝜆1𝑑𝜆2.
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From the coefficient second order power in 𝑝 for
𝐻𝑖(𝑢, 𝑣, 𝑝) = 0 (𝑖 = 1, 2), we have

𝐿1[𝑢2] = 𝑓𝑢(𝑢0, 𝑣9)𝑢1 + 𝑓𝑣(𝑢0, 𝑣9)𝑣1 − 2𝑎(𝑢1𝑣0𝑦

+ 𝑢0𝑣1𝑦)− 𝑎(𝑣1𝑢0𝑦 + 𝑣0𝑢1𝑦)

≡ 𝑓(𝑡, 𝑥, 𝑦), (29)

𝐿2[𝑢2, 𝑣2] = 0. (30)

Thus, a set of solution of system (29)–(30) with zero
initial value will read

𝑢2(𝑡, 𝑥, 𝑦) =
1

4𝜋2

∫︁ 𝑡

0

𝑑𝑡1

∫︁ ∞

−∞

∫︁ ∞

−∞
𝑓(𝜏, 𝜉, 𝜂)

· 𝐹1(𝑡, 𝑥, 𝑦; 𝜏, 𝜉, 𝜂)𝑑𝜉𝑑𝜂𝑑𝜏, (31)

𝑣1(𝑡, 𝑥, 𝑦) =
1

4𝜋2

∫︁ 𝑡

0

𝑑𝑡1

∫︁ ∞

−∞

∫︁ ∞

−∞

∫︁ 𝑦

−∞
𝑓(𝜏, 𝜉, 𝜂)

· 𝐹1(𝑡, 𝑥, 𝑦1; 𝜏, 𝜉, 𝜂)]𝜉𝑑𝑦1𝑑𝜉𝑑𝜂𝑑𝜏. (32)

From Eqs. (23), (24), (27), (28), (31), (32) and the ho-
motopic theory, we obtain the second order approxi-
mation of solitary wave solution for the generalized
nonlinear KdV system (1)–(2):

𝑢(𝑡, 𝑥, 𝑦) =
𝐹 2

𝑦𝑦(𝑦)− 𝑐𝐹 2
𝑦 (𝑦)− 2𝐹𝑦(𝑦)𝐹𝑦𝑦𝑦(𝑦)
2𝑎𝐹 2

𝑦 (𝑦)

+
4𝐹𝑦𝑦(𝑦)

𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))

−
4𝐹 2

𝑦 (𝑦)
𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))2

+
1

4𝜋2

∫︁ 𝑡

0

𝑑𝑡1

∫︁ ∞

−∞

∫︁ ∞

−∞

[︀
𝑓
(︀
𝑢0(𝜏, 𝜉, 𝜂),

𝑣0(𝜏, 𝜉, 𝜂)
)︀

+ 𝑓(𝜏, 𝜉, 𝜂)
]︀

× 𝐹1(𝑡, 𝑥, 𝑦; 𝜏, 𝜉, 𝜂)𝑑𝜉𝑑𝜂𝑑𝜏, (33)

𝑣(𝑡, 𝑥, 𝑦) =
−4𝐹𝑦(𝑦)𝐺𝑥(𝑥− 𝑐𝑡)

𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))2
+

1
4𝜋2

∫︁ 𝑡

0

𝑑𝑡1

·
∫︁ ∞

−∞

∫︁ ∞

−∞

∫︁ 𝑦

−∞

[︀
[𝑓(𝑢0(𝜏, 𝜉, 𝜂), 𝑣0(𝜏, 𝜉, 𝜂))

+ 𝑓(𝜏, 𝜉, 𝜂)]

× 𝐹1(𝑡1, 𝑥, 𝑦1; 𝜏, 𝜉, 𝜂)
]︀
𝜉
𝑑𝑦1𝑑𝜉𝑑𝜂𝑑𝜏. (34)

Consequently, using the same method, we can also ob-
tain the higher order approximation of solitary wave
solution for the generalized nonlinear KdV system (1)–
(2).

In order to explain the accuracy of the expres-
sions of approximate solutions (33) and (34), now
we consider the small perturbation term 𝑓(𝑢, 𝑣) =
𝜀 sin(𝑢 + 𝑣), 0 < 𝜀≪ 1 in Eq. (1).

Firstly, from Eqs. (33) and (34), we can obtain a
set of approximate solution (𝑢, 𝑣) by using the homo-
topic mapping method as follows:

𝑢(𝑡, 𝑥, 𝑦) =
𝐹 2

𝑦𝑦(𝑦)− 𝑐𝐹 2
𝑦 (𝑦)− 2𝐹𝑦(𝑦)𝐹𝑦𝑦𝑦(𝑦)
2𝑎𝐹 2

𝑦 (𝑦)

+
4𝐹𝑦𝑦(𝑦)

𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))

−
4𝐹 2

𝑦 (𝑦)
𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))2

+
𝜀

4𝜋2

∫︁ 𝑡

0

𝑑𝑡1

∫︁ ∞

−∞

∫︁ ∞

−∞

[︀
(sin(𝑢0 + 𝑣0)

− 2𝑎(𝑢̄1𝑣0𝑦 + 𝑢0𝑣1𝑦)− 𝑎(𝑣1𝑢0𝑦 + 𝑣0𝑢̄1𝑦)
]︀

× 𝐹1(𝑡, 𝑥, 𝑦; 𝜏, 𝜉, 𝜂)𝑑𝜉𝑑𝜂𝑑𝜏 + 𝑂(𝜀2),

0 < 𝜀≪ 1, (35)

𝑣(𝑡, 𝑥, 𝑦) =
−4𝐹𝑦(𝑦)𝐺𝑥(𝑥− 𝑐𝑡)

𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))2
+

𝜀

4𝜋2

∫︁ 𝑡

0

𝑑𝑡1

·
∫︁ ∞

−∞

∫︁ ∞

−∞

∫︁ 𝑦

−∞

[︀
[sin(𝑢0 + 𝑣0)− 2𝑎(𝑢̄1𝑣0𝑦)

− 𝑎(𝑣1𝑢0𝑦 + 𝑣0𝑢1𝑦)]

× 𝐹1(𝑡1, 𝑥, 𝑦1; 𝜏, 𝜉, 𝜂)
]︀
𝜉
𝑑𝑦1𝑑𝜉𝑑𝜂𝑑𝜏 + 𝑂(𝜀2),

0 < 𝜀≪ 1, (36)

where 𝑢0, 𝑣0 and 𝑢1 = 𝜀𝑢̄1, 𝑣1 = 𝜀 𝑣1 denote by
Eqs. (23), (24) and (27), (28) as 𝑓(𝑢, 𝑣) = 𝜀 sin(𝑢+ 𝑣),
respectively.

On the other hand, we construct the asymptotic
solution (𝑢̃, 𝑣) of system (1)–(2) as 𝑓(𝑢, 𝑣) = 𝜀 sin(𝑢 +
𝑣) by using the perturbation method. Let

𝑢̃ =
∞∑︁

𝑖=0

𝑢̃𝑖(𝑡, 𝑥, 𝑦)𝜀𝑖, 𝑢̃ =
∞∑︁

𝑖=0

𝑣𝑖(𝑡, 𝑥, 𝑦)𝜀𝑖,

0 < 𝜀≪ 1. (37)

Substituting Eq. (37) into system (1)–(2) as 𝑓(𝑢, 𝑣) =
𝜀 sin(𝑢 + 𝑣) in 𝜀, comparing the coefficients for the
same powers in 𝜀, we can obtain (𝑢̃0, 𝑣0), (𝑢̃1, 𝑣1).
From Eq. (37), we have

𝑢̃(𝑡, 𝑥, 𝑦) =
𝐹 2

𝑦𝑦(𝑦)− 𝑐𝐹 2
𝑦 (𝑦)− 2𝐹𝑦(𝑦)𝐹𝑦𝑦𝑦(𝑦)
2𝑎𝐹 2

𝑦 (𝑦)

+
4𝐹𝑦𝑦(𝑦)

𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))

−
4𝐹 2

𝑦 (𝑦)
𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))2

+
𝜀

4𝜋2

∫︁ 𝑡

0

𝑑𝑡1

∫︁ ∞

−∞

∫︁ ∞

−∞
[(sin(𝑢0 + 𝑣0)

− 2𝑎(𝑢̄1𝑣0𝑦 + 𝑢0𝑣1𝑦)− 𝑎(𝑣1𝑢0𝑦 + 𝑣0𝑢̄1𝑦)]

× 𝐹1(𝑡, 𝑥, 𝑦; 𝜏, 𝜉, 𝜂)𝑑𝜉𝑑𝜂𝑑𝜏 + 𝑂(𝜀2),

0 < 𝜀≪ 1, (38)

𝑣(𝑡, 𝑥, 𝑦) =
−4𝐹𝑦(𝑦)𝐺𝑥(𝑥− 𝑐𝑡)

𝑎(𝐹 (𝑦) + 𝐺(𝑥− 𝑐𝑡))2
+

𝜀

4𝜋2

∫︁ 𝑡

0

𝑑𝑡1

·
∫︁ ∞

−∞

∫︁ ∞

−∞

∫︁ 𝑦

−∞

[︀
[sin(𝑢0 + 𝑣0)− 2𝑎(𝑢̄1𝑣0𝑦)

− 𝑎(𝑣1𝑢0𝑦 + 𝑣0𝑢1𝑦)]× 𝐹1(𝑡1, 𝑥, 𝑦1; 𝜏, 𝜉, 𝜂)
]︀
𝜉

· 𝑑𝑦1𝑑𝜉𝑑𝜂𝑑𝜏 + 𝑂(𝜀2), 0 < 𝜀≪ 1. (39)
010204-3
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Comparing Eqs. (35), (36) and (38), (39) respectively,
we find that they are the same. Therefore, it may
be found that the approximate solution of solitary
wave for the generalized nonlinear KdV system (1)–
(2) by using the homotopic mapping method possesses
a good accuracy.

Solitary wave denotes a class of complicated nat-
ural phenomena. Hence we solve them using the ap-
proximate method. The homotopic mapping method
is a simple and valid method.

The homotopic mapping method is an approxi-
mate analytic method, which differs from general nu-
merical method. The expansions of solution using the
homotopic mapping method can be continuously an-
alytical operation. Thus, from Eqs. (34) and (35), we
can study further the qualitative and quantitative be-
haviour of solitary wave elsewhere.
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