Dynamic Simulation for Hysteresis in Shape Memory Alloy under Tension
-
Abstract
We demonstrate that the Suliciu model is capable to model the hysteresis phenomenon observed experimentally in NiTi shape memory alloy micro-tubes. This model allows a class of stationary phase interfaces. By a series of fully dynamic numerical simulations that mimic quasi-static loading and unloading, the nominal stress--strain curve exhibits a big hysteresis loop, which quantitatively agrees with the experimental results.
Article Text
-
-
-
About This Article
Cite this article:
WANG Ping, ZHAO Jian-Bo, TANG Shao-Qiang. Dynamic Simulation for Hysteresis in Shape Memory Alloy under Tension[J]. Chin. Phys. Lett., 2008, 25(5): 1788-1791.
WANG Ping, ZHAO Jian-Bo, TANG Shao-Qiang. Dynamic Simulation for Hysteresis in Shape Memory Alloy under Tension[J]. Chin. Phys. Lett., 2008, 25(5): 1788-1791.
|
WANG Ping, ZHAO Jian-Bo, TANG Shao-Qiang. Dynamic Simulation for Hysteresis in Shape Memory Alloy under Tension[J]. Chin. Phys. Lett., 2008, 25(5): 1788-1791.
WANG Ping, ZHAO Jian-Bo, TANG Shao-Qiang. Dynamic Simulation for Hysteresis in Shape Memory Alloy under Tension[J]. Chin. Phys. Lett., 2008, 25(5): 1788-1791.
|