Accelerated Multi-Level Atoms in an Electromagnetic Vacuum and Fulling--Davies--Unruh Effect
-
Abstract
We consider, from the point of view of a coaccelerated frame, a uniformly accelerated multi-level atom in interaction with vacuum quantum electromagnetic fields in the multi-polar coupling scheme, and calculate the rate of change of the atom's energy assuming a thermal bath at a finite temperature T in the Rindler wedge. Comparison with the spontaneous excitation rate of the atom calculated in the instantaneous inertial frame of the atom shows that both the inertial and coaccelerated observer would
agree with each other only when the temperature of the thermal bath equals the FDU value TFDU=a/2π.
Article Text
-
-
-
About This Article
Cite this article:
ZHU Zhi-Ying, YU Hong-Wei. Accelerated Multi-Level Atoms in an Electromagnetic Vacuum and Fulling--Davies--Unruh Effect[J]. Chin. Phys. Lett., 2008, 25(5): 1575-1578.
ZHU Zhi-Ying, YU Hong-Wei. Accelerated Multi-Level Atoms in an Electromagnetic Vacuum and Fulling--Davies--Unruh Effect[J]. Chin. Phys. Lett., 2008, 25(5): 1575-1578.
|
ZHU Zhi-Ying, YU Hong-Wei. Accelerated Multi-Level Atoms in an Electromagnetic Vacuum and Fulling--Davies--Unruh Effect[J]. Chin. Phys. Lett., 2008, 25(5): 1575-1578.
ZHU Zhi-Ying, YU Hong-Wei. Accelerated Multi-Level Atoms in an Electromagnetic Vacuum and Fulling--Davies--Unruh Effect[J]. Chin. Phys. Lett., 2008, 25(5): 1575-1578.
|