Effects of Fractal Size Distributions on Velocity Distributions and Correlations of a Polydisperse Granular Gas
-
Abstract
By the Monte Carlo method, the effect of dispersion of disc size distribution on the velocity distributions and correlations of a polydisperse granular gas with fractal size distribution is investigated in the same inelasticity. The dispersion can be described by a fractal dimension D, and the smooth hard
discs are engaged in a two-dimensional horizontal rectangular box, colliding inelastically with each other and driven by a homogeneous heat bath. In the steady state, the tails of the velocity distribution functions rise more significantly above a Gaussian as D increases, but the non-Gaussian velocity distribution functions do not demonstrate any apparent universal form for any value of D. The spatial velocity correlations are apparently stronger with the
increase of D. The perpendicular correlations are about half the parallel correlations, and the two correlations are a power-law decay function of dimensionless distance and are of a long range. Moreover, the parallel velocity correlations of postcollisional state at contact are more than twice as large as the precollisional correlations, and both of them show almost linear behaviour of the fractal dimension D. -
References
[1] Olafsen J S and Urbach J S 1998 Phys. Rev. Lett. 81 4369 [2] Losert W, Cooper D G W, Delour J, Kudrolli A and Gollub JP 1999 Chaos 9 682 [3] Bizon C, Shattuck M D, Swift J B and Swinney H L 1999 Phys. Rev. E 60 4340 [4] Moon S J, Shattuck M D and Swift J B 2001 Phys. Rev.E 64 031303 [5] Blair D L and Kudrolli A 2001 Phys. Rev. E 64050301(R) [6] Brey J J and Ruiz-Montero M J 2003 Phys. Rev. E 67 021307 [7] Puglisi A, Loreto V, Marconi U M B, Petri A and Vulpiani A1998 Phys. Rev. Lett. 81 3848 [8] Paolotti D, Cattuto C, Marconi U M B and Puglisi A 2003 Granular Matter 5 75 [9] van Noije T P C, Ernst M H, Trizac E and Pagonabarraga I1999 Phys. Rev. E 59 4326 [10] Prevost A, Egolf D A and Urbach J S 2002 Phys. Rev.Lett. 89 084301 [11] Williams D R M and MacKintosh F C 1996 Phys. Rev. E 54 R9 Swift M R, Boamf\u{a M, Cornell S J and Maritan A 1998 Phys. Rev. Lett. 80 4410 [12] Orza J A G, Brito R, van Noije T P C and Ernst M H 1997 Int. J. Mod. Phys. C 8 953 [13] Soto R and Mareschal M 2001 Phys. Rev. E 63041303 [14] Peng G W and Ohta T 1998 Phys. Rev. E 58 4737 [15] Normand M D and Peleg M 1986 Powder Technol. 45 271 Hyslip J P and Vallejo L E 1997 Eng. Geol. 48231 [16] Zhang D M, Zhang Z and Yu B M 1999 Commun. Theor.Phys. 31 373 [17] Zhang D M, Lei Y J, Pan G J and Yu B M 2003 Chin.Phys. Lett. 20 2221 [18] Zhang D M, Li R, Su X Y, Pan G J and Yu B M 2005 J.Phys. A: Math. Gen. 38 8861 [19] Zhang D M, Chen Z Y and Yin Y P 2007 Physica A 374 187 [20] Allen M P and Tildesley D J 1989 Computer Simulationof Liquids (New York: Oxford University Press) -
Related Articles
[1] Yuan Yin, Mei Wu, Xiang Ding, Peiyi He, Qize Li, Xiaowen Zhang, Ruixue Zhu, Ruilin Mao, Xiaoyue Gao, Ruochen Shi, Liang Qiao, Peng Gao. Electron microscopy and spectroscopy investigation of atomic, electronic, and phonon structures of NdNiO2/SrTiO3 interface [J]. Chin. Phys. Lett., 2025, 42(4): 047402. doi: 10.1088/0256-307X/42/4/047402 [2] Shunli Ni, Sheng Ma, Yuhang Zhang, Jie Yuan, Haitao Yang, Zouyouwei Lu, Ningning Wang, Jianping Sun, Zhen Zhao, Dong Li, Shaobo Liu, Hua Zhang, Hui Chen, Kui Jin, Jinguang Cheng, Li Yu, Fang Zhou, Xiaoli Dong, Jiangping Hu, Hong-Jun Gao, Zhongxian Zhao. Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5 [J]. Chin. Phys. Lett., 2021, 38(5): 057403. doi: 10.1088/0256-307X/38/5/057403 [3] KANG Xiu-Bao, TIAN Tai-He, WANG Zhi-Guo. Optical Nonlinearity of Subwavelength Metal-dielectric Gratings: Effects of Strong Anisotropy [J]. Chin. Phys. Lett., 2011, 28(9): 094206. doi: 10.1088/0256-307X/28/9/094206 [4] WEI Meng, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, PAN Xu, HOU Qi-Feng, WANG Zhan-Guo. Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(4): 048102. doi: 10.1088/0256-307X/28/4/048102 [5] HU Lian, K.Y. Szeto, SUN Xin. Influence of Strong Electron-Electron Interaction on the Peierls Transition [J]. Chin. Phys. Lett., 1997, 14(1): 63-66. [6] HU Xiaoming, LIN Zhangda. Observation of the Si(100)-(2 x 2) Phase and Measurements of Low Energy Electron Diffraction I-V Curves [J]. Chin. Phys. Lett., 1995, 12(9): 557-560. [7] XU Tiefeng, CHEN Feng, YAN Dadong, LI Wenzhu (Wenzhou Li). Electron-Phonon Vertex Corrections and Superconductivity inAlkali-Metal-Doped C60 Solids [J]. Chin. Phys. Lett., 1994, 11(4): 242-245. [8] CHEN Changfeng. COMMENT ON SUPERCONDUCTIVITY CAUSED BY STRONG CORRELATION [J]. Chin. Phys. Lett., 1989, 6(2): 96-96. [9] WEI Chongde, LIN Chin, ZHOU Yaqin, WU Ke, Xue Lixin. SUPERCONDUCTIVITY OF LaBa2-xCaxCu3Oy SYSTEM [J]. Chin. Phys. Lett., 1988, 5(7): 301-304. [10] FENG Shiping, MA Benkun. SUPERCONDUCTIVITY CAUSED BY STRONG CORRELATION [J]. Chin. Phys. Lett., 1988, 5(5): 229-232. -
Cited by
Periodical cited type(12)
1. Shu, H., Zhong, W., Feng, J. et al. Observation of superconductivity and ferromagnetism in high-entropy carbide ceramics. Acta Materialia, 2025. DOI:10.1016/j.actamat.2024.120693 2. Ushioda, T., Muranaka, T. Two-gap superconducting states of LaRu3Si2. Physica C: Superconductivity and its Applications, 2024. DOI:10.1016/j.physc.2024.1354583 3. Zhao, Z., Yao, J., Xu, R. et al. Surface-sensitive electronic structure of kagome superconductor CsV3Sb5. Chinese Physics B, 2024, 33(10): 107403. DOI:10.1088/1674-1056/ad7016 4. Meena, P.K., Mandal, M., Manna, P. et al. Superconductivity in breathing kagome-structured C14 Laves phase XOs2(X = Zr, Hf). Superconductor Science and Technology, 2024, 37(7): 075004. DOI:10.1088/1361-6668/ad4a32 5. Liu, J., Zhou, T. Probing the pairing symmetry in kagome superconductors based on the single-particle spectrum. Physical Review B, 2024, 109(5): 054504. DOI:10.1103/PhysRevB.109.054504 6. Wu, X., Chakraborty, D., Schnyder, A.P. et al. Crossover between electron-electron and electron-phonon mediated pairing on the kagome lattice. Physical Review B, 2024, 109(1): 014517. DOI:10.1103/PhysRevB.109.014517 7. Wang, Y., Wu, H., McCandless, G.T. et al. Quantum states and intertwining phases in kagome materials. Nature Reviews Physics, 2023, 5(11): 635-658. DOI:10.1038/s42254-023-00635-7 8. Liu, H., Yao, J., Shi, J. et al. Vanadium-based superconductivity in the breathing kagome compound Ta2 V3.1Si0.9. Physical Review B, 2023, 108(10): 104504. DOI:10.1103/PhysRevB.108.104504 9. Chen, X.-J., Zhang, B.-W., Han, D. et al. Electronic and topological properties of kagome lattice LaV3Si2. Tungsten, 2023, 5(3): 317-324. DOI:10.1007/s42864-022-00200-2 10. Liu, Y., Lyu, M., Liu, J. et al. Structural Determination, Unstable Antiferromagnetism and Transport Properties of Fe-Kagome Y0.5Fe3Sn3 Single Crystals. Chinese Physics Letters, 2023, 40(4): 047102. DOI:10.1088/0256-307X/40/4/047102 11. Wang, Y.. Electronic correlation effects on stabilizing a perfect Kagome lattice and ferromagnetic fluctuation in LaRu3Si2. Journal of University of Science and Technology of China, 2023, 53(7): 0702. DOI:10.52396/JUSTC-2022-0182 12. Rømer, A.T., Bhattacharyya, S., Valentí, R. et al. Superconductivity from repulsive interactions on the kagome lattice. Physical Review B, 2022, 106(17): 174514. DOI:10.1103/PhysRevB.106.174514 Other cited types(0)