Limits from Weak Gravity Conjecture on Chaplygin-Gas-Type Models
-
Abstract
The weak gravity conjecture is proposed as a criterion to distinguish the landscape from the swampland in string theory. As an application in cosmology of this conjecture, we use it to impose theoretical constraint on parametersof the Chaplygin-gas-type models. Our analysis indicates that the
Chaplygin-gas-type models realized in quintessence field are in the swampland. -
References
[1] Copeland E J, Sami M and Tsujikawa S 2006 Int. J.Mod. Phys. D 15 1753
[hep-th/0603057][2] Giddings S B, Kachru S and Polchinski J 2002 Phys.Rev. D 66 106006 [3] Kachru S, Kallosh R, Linde A and Trivedi S P 2003 Phys. Rev. D 68 046005 [4] Douglas M R Talk at the Strings 2005 Conference VafaC
[hep-th/0509212][5] Susskind L
[hep-th/0302219][6] Arkani-Hamed N, Motl L, Nicolis A and Vafa C 2007 J.High Energy Phys. 0706 060
[hep-th/0601001][7] Huang Q G, Li M and Song W 2006 J. High Energy Phys. 0610 059
[hep-th/0603127][8] Huang Q G 2007 J. High Energy Phys. 0705 096
[astro-ph/0703071][9] Huang Q G arXiv:0706.2215
[hep-th][10] Huang Q G, Li M and Wang Y arXiv:0707.3471
[hep-th][11] Huang Q G arXiv:0708.2760
[astro-ph][12] Chaplygin S 1904 Sci. Mem. Moscow Univ. Math. Phys. 21 1 [13] Kamenshchik A, Moschella U and Pasquier V 2001 Phys.Lett. B 511 265 [14] Bili N, Tupper G B and Viollier R D 2002 Phys. Lett. B 535 17 [15] Bento M C, Bertolami O and Sen A A 2002 Phys. Rev.D 66 043507 Sen A A and Scherrer R J 2005 Phy. Rev. D 72063511 [16] Guo Z K and Zhang Y Z 2007 Phys. Lett. B 645326 [17] Bento M C, Bertolami O and Sen A A 2003 Phys. Rev.D 67 063003 [18] Bertolami O, Sen A A, Sen S, and Silva P T 2004 Mon.Not. R. Astron. Soc. 353 329
[astro-ph/0402387][19] Gong Y G 2005 JCAP 0503 007 [20] Zhu Z H 2004 Astron. Astronphys. 423 421
[astro-ph/0411039][21] Sethi G, Singh S K, Kumar P, Jain D and Dev A 2006 Int. J. Mod. Phys. D 15 1089 [22] Guo Z K and Zhang Y Z
[astro-ph/0509790][23] Bili N, Tupper G B and Viollier R D 2004 J. Cosmol. Astropart. Phys. 0411 008 [24] Reis R R R, Waga I, Calvo M O, andJors S E 2003 Phys. Rev. D 68 061302 [25] Tegmark M et al 2004 Phys. Rev. D 69103501 [26] Spergel D N et al 2007 Astrophys. J. Suppl. 170 377 -
Related Articles
[1] Man Xing, Jun Wang, Xi Zhao, Shushan Zhou. The Role of Multi-Electron and Multi-Orbital Effects in High-Order Harmonic Generation of Benzonitrile Molecules [J]. Chin. Phys. Lett., 2025, 42(4): 043201. doi: 10.1088/0256-307X/42/4/043201 [2] LI Na-Na, ZHAI Zhen, LIU Xue-Shen. High-Order Harmonic Generation from a Model of Ar+ Ionized Clusters [J]. Chin. Phys. Lett., 2008, 25(7): 2508-2510. [3] GE Yu-Cheng. Laser-Duration Dependence of Emission Properties of High-Order Harmonic Generation [J]. Chin. Phys. Lett., 2008, 25(4): 1305-1308. [4] GE Yu-Cheng. Laser Phase Relations of High-Order Harmonic Generation [J]. Chin. Phys. Lett., 2006, 23(9): 2461-2464. [5] PI Liang-Wen, SHI Ting-Yun, QIAO Hao-Xue. Enhancement of Bichromatic High-Order Harmonic Generation by a Strong Laser Field and Its Third Harmonic [J]. Chin. Phys. Lett., 2006, 23(6): 1490-1493. [6] WANG Bing-Bing, CHEN Jing, LIU Jie, LI Xiao-Feng, FU Pan-Ming. Carrier Envelope Phase Controlled High-Order Harmonic Generation in Ultrashort Laser Pulse [J]. Chin. Phys. Lett., 2005, 22(9): 2237-2240. [7] WANG Run-Hai, JIANG Hong-Bing, YANG Hong, WU Cheng-Yin, GONG Qi-Huang. High-Order Harmonic Generation by Two Non-Collinear Femtosecond Laser Pulses in CO [J]. Chin. Phys. Lett., 2005, 22(8): 1913-1915. [8] CHEN Jing, CHEN Shi-Gang, LIU Jie. High-Order Harmonic Generation in the Ionization Process [J]. Chin. Phys. Lett., 2000, 17(10): 723-725. [9] GAO Liang-hui, LI Xiao-feng, GUO Dong-sheng, FU Pan-ming. Formal Scattering Approach to High-Order Harmonic Generation [J]. Chin. Phys. Lett., 1999, 16(7): 502-504. [10] WANG Bing-bing, LI Xiao-feng, FU Pan-ming. High-Order Harmonic Generation in the Presence of Static Electric Field [J]. Chin. Phys. Lett., 1998, 15(3): 195-197.