Research on ZrO2 Thermal Barrier Coatings Modified by High-Intensity Pulsed Ion Beam

  • We report a modification method for ZrO2 thermal barrier coatings (TBCs) by high-intensity pulsed ion beam (HIPIB) irradiation. Based on the temporal and spatial distribution models of the ion beam density detected by Faraday cup
    in the chamber and the ions accelerating voltage, the energy deposition of the beam ions in ZrO2 is calculated by Monte Carlo method. Taking this time-dependent nonlinear deposited energy as the source term of two-dimensional thermal conduction equation, we obtain the temporal and spatial ablation process of ZrO2 thermal barrier coatings during a pulse time. The top-layer TBC material in thickness of about 0.2μm is ablated by vaporization and the
    coating in thickness of 1μm is melted after one shot at the ion current density of 200A/cm2. This calculation is in reasonable agreement with those measured by HIPIB irradiation experiments. The melted top coat becoming a dense modification layer due to HIPIB irradiation seals the gaps among ZrO2 crystal clusters, and hence barrels the direct tunnel of oxygen.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return