Electronic Curves Crossing in Methyl Iodide by Spin--Orbit Ab Initio Calculation
-
Abstract
An ab initio investigation of electronic curve crossing in a methyl iodide molecule is carried out using spin--orbit multiconfigurational quasidegenerate perturbation theory. The one-dimensional rigid potential curves and optimized
effective curves of low-lying states, including spin--orbit coupling and relativistic effects, are calculated. The spin--orbit electronic curve crossing between 3Q 0+ and 1Q1, and the shadow minimum in potential energy curve of 3Q0+ at large internuclear distance are found in both sets of the curves according to the present calculations. The crossing position is in the range of
RC-I=0.2370±0.0001nm. Comparisons with other reports are presented.
Article Text
-
-
-
About This Article
Cite this article:
LI Rui, YAN Bing, ZHAO Shu-Tao, GUO Qing-Qun, LIAN Ke-Yan, TIAN Chuan-Jin, PAN Shou-Fu. Electronic Curves Crossing in Methyl Iodide by Spin--Orbit Ab Initio Calculation[J]. Chin. Phys. Lett., 2008, 25(5): 1644-1645.
LI Rui, YAN Bing, ZHAO Shu-Tao, GUO Qing-Qun, LIAN Ke-Yan, TIAN Chuan-Jin, PAN Shou-Fu. Electronic Curves Crossing in Methyl Iodide by Spin--Orbit Ab Initio Calculation[J]. Chin. Phys. Lett., 2008, 25(5): 1644-1645.
|
LI Rui, YAN Bing, ZHAO Shu-Tao, GUO Qing-Qun, LIAN Ke-Yan, TIAN Chuan-Jin, PAN Shou-Fu. Electronic Curves Crossing in Methyl Iodide by Spin--Orbit Ab Initio Calculation[J]. Chin. Phys. Lett., 2008, 25(5): 1644-1645.
LI Rui, YAN Bing, ZHAO Shu-Tao, GUO Qing-Qun, LIAN Ke-Yan, TIAN Chuan-Jin, PAN Shou-Fu. Electronic Curves Crossing in Methyl Iodide by Spin--Orbit Ab Initio Calculation[J]. Chin. Phys. Lett., 2008, 25(5): 1644-1645.
|