On the Conversion of High-Frequency Soliton Solutions to a (1+1)-Dimensional Nonlinear Partial Differential Evolution Equation
-
Abstract
From the dynamical equation of barotropic relaxing media beneath pressure perturbations, and using the reductive perturbative analysis, we investigate the soliton structure of a (1+1)-dimensional nonlinear partial differential
evolution (NLPDE) equation 8706;y (8706;η+u8706;y+(u2/2)8706;y )u+α uy+u=0, describing high-frequency regime of perturbations. Thus, by means of Hirota's bilinearization method, three typical solutions depending strongly upon a characteristic dissipation parameter are unearthed.
Article Text
-
-
-
About This Article
Cite this article:
Kuetche Kamgang Victor, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. On the Conversion of High-Frequency Soliton Solutions to a (1+1)-Dimensional Nonlinear Partial Differential Evolution Equation[J]. Chin. Phys. Lett., 2008, 25(6): 1972-1975.
Kuetche Kamgang Victor, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. On the Conversion of High-Frequency Soliton Solutions to a (1+1)-Dimensional Nonlinear Partial Differential Evolution Equation[J]. Chin. Phys. Lett., 2008, 25(6): 1972-1975.
|
Kuetche Kamgang Victor, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. On the Conversion of High-Frequency Soliton Solutions to a (1+1)-Dimensional Nonlinear Partial Differential Evolution Equation[J]. Chin. Phys. Lett., 2008, 25(6): 1972-1975.
Kuetche Kamgang Victor, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. On the Conversion of High-Frequency Soliton Solutions to a (1+1)-Dimensional Nonlinear Partial Differential Evolution Equation[J]. Chin. Phys. Lett., 2008, 25(6): 1972-1975.
|