A new explicit scheme for the Korteweg--de Vries (KdV) equation is proposed. The scheme is more stable than the Zabusky--Kruskal scheme and the multi-symplectic six-point scheme. When used to simulate the collisions of multi-soliton, it does not show the nonlinear instabilities and un-physical oscillations.
Zabusky N J and Kruskal M D 1965 Phys. Rev. 155 240
[2]
Feng K and Qin M Z 1987 Lecture Notes inMathematics {vol. 1297 1
[3]
Feng K, Wu H M, Qin M Z and Wang D L 1989 J.Comput. Math. 7(1) 71
[4]
Hairer E, Lubich C and Wanner G 2002 GeometricNumerical Integration, Structure-Preserving Algorithms forOrdinary Differential Equations (Berlin: Springer)
[5]
Zhao P F and Qin M Z 2000 J. Phys. A 33(18)3613
[6]
Abe K and Inoue O 1980 J. Comput. Phys. 34(2) 202
[7]
Huang M Y 1991 Math. Comput. 56 607
[8]
Guo B Y 1985 Acta Math. Scientia 5 337
[9]
Guo B Y 1988 Difference Method for PartialDifferential Equations (Beijing: Science Press) (in Chinese)
[10]
Ascher U M and McLachlan R I 2004 Appl. Numer.Math. 48 255
[11]
Ascher U M and McLachlan R I 2005 J. Sci. Comput. 25 83
[12]
Taha T R and Ablowtitz M J 1984 J. Comput.Phys. 55 231
[13]
Chertock A and Levy D 2001 J. Sci. Comput. 17 491
[14]
Wang Y S, Wang B and Chen X 2007 Chin. Phys.Lett. 24(2) 312
[15]
Bridge T J and Reich S 2001 Phys. Lett. A 284 184
[16]
Yu D H and Tang H Z 2003 Numerical Solutions ofDifferential Equations (Beijing: Science Press)(in Chinese)
[17]
Li S F and Vu-Quoc L 1995 SIAM J. Numer. Anal. 32 1839