An Explicit Scheme for the KdV Equation

  • Received Date: November 18, 2007
  • Published Date: June 30, 2008
  • A new explicit scheme for the Korteweg--de Vries (KdV) equation is proposed. The scheme is more stable than the Zabusky--Kruskal scheme and the multi-symplectic six-point scheme. When used to simulate the collisions of multi-soliton, it does not show the nonlinear instabilities and un-physical oscillations.
  • Article Text

  • [1] Zabusky N J and Kruskal M D 1965 Phys. Rev. 155 240
    [2] Feng K and Qin M Z 1987 Lecture Notes inMathematics {vol. 1297 1
    [3] Feng K, Wu H M, Qin M Z and Wang D L 1989 J.Comput. Math. 7(1) 71
    [4] Hairer E, Lubich C and Wanner G 2002 GeometricNumerical Integration, Structure-Preserving Algorithms forOrdinary Differential Equations (Berlin: Springer)
    [5] Zhao P F and Qin M Z 2000 J. Phys. A 33(18)3613
    [6] Abe K and Inoue O 1980 J. Comput. Phys. 34(2) 202
    [7] Huang M Y 1991 Math. Comput. 56 607
    [8] Guo B Y 1985 Acta Math. Scientia 5 337
    [9] Guo B Y 1988 Difference Method for PartialDifferential Equations (Beijing: Science Press) (in Chinese)
    [10] Ascher U M and McLachlan R I 2004 Appl. Numer.Math. 48 255
    [11] Ascher U M and McLachlan R I 2005 J. Sci. Comput. 25 83
    [12] Taha T R and Ablowtitz M J 1984 J. Comput.Phys. 55 231
    [13] Chertock A and Levy D 2001 J. Sci. Comput. 17 491
    [14] Wang Y S, Wang B and Chen X 2007 Chin. Phys.Lett. 24(2) 312
    [15] Bridge T J and Reich S 2001 Phys. Lett. A 284 184
    [16] Yu D H and Tang H Z 2003 Numerical Solutions ofDifferential Equations (Beijing: Science Press)(in Chinese)
    [17] Li S F and Vu-Quoc L 1995 SIAM J. Numer. Anal. 32 1839
  • Related Articles

    [1]DAI Zheng-De, WU Feng-Xia, LIU Jun, MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation [J]. Chin. Phys. Lett., 2012, 29(4): 040201. doi: 10.1088/0256-307X/29/4/040201
    [2]CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2012, 29(3): 030201. doi: 10.1088/0256-307X/29/3/030201
    [3]LV Zhong-Quan, XUE Mei, WANG Yu-Shun. A New Multi-Symplectic Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060205. doi: 10.1088/0256-307X/28/6/060205
    [4]WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2007, 24(2): 312-314.
    [5]LI Wen-Min, GENG Xian-Guo. Darboux Transformation of a Differential--Difference Equation and Its Explicit Solutions [J]. Chin. Phys. Lett., 2006, 23(6): 1361-1364.
    [6]MA Chang-Feng. A New Lattice Boltzmann Model for KdV-Burgers Equation [J]. Chin. Phys. Lett., 2005, 22(9): 2313-2315.
    [7]YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
    [8]YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67.
    [9]ZHANG Jiefang, HAN Ping. Symmetries of the Variable Coefficient KdV Equation and ThreeHierarchies of the Integrodifferential Variable Coefficient KdV Equation [J]. Chin. Phys. Lett., 1994, 11(12): 721-723.
    [10]TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation [J]. Chin. Phys. Lett., 1991, 8(6): 292-295.

Catalog

    Article views (2) PDF downloads (2004) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return