Wronskian Form of N-Soliton Solution for the (2+1)-Dimensional Breaking Soliton Equation
-
Abstract
The Wronskian form of N-soliton solution for the (2+1)-dimensional breaking soliton equation is obtained by resorting to the Hirota direct method.
-
References
[1] Calogero F and Degasperis A 1977 Nuovo Cimento B 31 201 Calogero F and Degasperis A 1977 Nuovo Cimento B 39 54 [2] Bogoyavlenskii O I 1990 Russian Math. Surveys 45 1 [3] Bogoyavlenskii O I 1990 Math. USSR Izvestiya 34 245 [4] Konopelchenko B G 1993 Solitons in Multidimensions(Singapore: World Scientific) [5] Bogoyavlenskij O I 1993 Nonlinear Processes in Physicseds Fokes A S, Kaup D J, Newell A C and Zakharov V E (Berlin: Springer) p 67 [6] Li Y S and Zhang Y J 1993 J. Phys. A 26 7487 [7] Lou S Y 1993 J. Phys. A 26 L789 [8] Radha R and Lakshmanan M 1995 Phys. Lett. A 197 7 [9] Hirota R 1971 Phys. Rev. Lett. 27 1192 [10] Hirota R and Satsuma J 1977 Prog. Theor. Phys. 57797 [11] Hirota R 2004 The Direct Methods in Soliton Theory(Cambridge: Cambridge University Press) [12] Geng X G and Cao C W 2004 Chaos, Solitons and Fractals -
Related Articles
[1] CHEN Jian-Bin, FENG Tai-Fu, GAO Tie-Jun. Kaluza–Klein Corrections to the μ Anomalous Magnetic Moment in the Appelquist–Cheng–Dobrescu Model [J]. Chin. Phys. Lett., 2012, 29(9): 091101. doi: 10.1088/0256-307X/29/9/091101 [2] Eser Olgar. Exact Solution of Klein--Gordon Equation by Asymptotic Iteration Method [J]. Chin. Phys. Lett., 2008, 25(6): 1939-1942. [3] M. Kocak. Bound State Solutions of Klein--Gordon Equation with the Kratzer Potential [J]. Chin. Phys. Lett., 2007, 24(2): 315-317. [4] DUAN Yi-Shi, WU Shao-Feng. Regular Magnetic Monopole from Generalized ’t Hooft Tensor [J]. Chin. Phys. Lett., 2006, 23(11): 2932-2935. [5] B.Gönül. A Search on the Klein--Gordon Equation [J]. Chin. Phys. Lett., 2006, 23(10): 2640-2643. [6] ZHANG Min-Cang, WANG Zhen-Bang. Exact Solutions of the Klein--Gordon Equation with a New Anharmonic Oscillator Potential [J]. Chin. Phys. Lett., 2005, 22(12): 2994-2996. [7] JING Ji-Liang, YAN Mu-Lin. Statistical Entropy of the Kaluza-Klein Black Hole from the Horizon Conformal Field Theory [J]. Chin. Phys. Lett., 2001, 18(3): 331-333. [8] NI Guang-Jiong, GUAN Hong, ZHOU Wei-Min, YAN Jun. Antiparticle in the Light of Einstein-Podolsky-Rosen Paradox and Klein Paradox [J]. Chin. Phys. Lett., 2000, 17(6): 393-395. [9] WEN Wan-xin, ZHONG Ji-quan, JIN Gen-ming. Giant Monopole Resonance with Boltzmann-Nordheim-Vlasov Model [J]. Chin. Phys. Lett., 1996, 13(10): 724-726. [10] SHEN Yougen. COSMICAL WAVE FUNCTION FOR THE COUPLING SCALARS FIELD IN THE THEORY OF KALUZA-KLEIN [J]. Chin. Phys. Lett., 1989, 6(1): 43-46.