Symplectic Schemes and the Shooting Method for Eigenvalues of the Schrödinger Equation
-
Abstract
The one-dimensional time-independent Schrödinger equation is transformed into a Hamiltonian canonical equation by means of the Legendre transformation, then the symplectic schemes and a new shooting method extended to the eigenvalues of the Schrödinger equation. The method is applied to the calculations of one-dimensional harmonic oscillator, an anharmonic oscillator and the hydrogen atom. The numerical results are in good agreement with the exact ones.
Article Text
-
-
-
About This Article
Cite this article:
LIU Xue-Shen, CHI Yu-Hua, DING Pei-Zhu. Symplectic Schemes and the Shooting Method for Eigenvalues of the Schrödinger Equation[J]. Chin. Phys. Lett., 2004, 21(9): 1681-1684.
LIU Xue-Shen, CHI Yu-Hua, DING Pei-Zhu. Symplectic Schemes and the Shooting Method for Eigenvalues of the Schrödinger Equation[J]. Chin. Phys. Lett., 2004, 21(9): 1681-1684.
|
LIU Xue-Shen, CHI Yu-Hua, DING Pei-Zhu. Symplectic Schemes and the Shooting Method for Eigenvalues of the Schrödinger Equation[J]. Chin. Phys. Lett., 2004, 21(9): 1681-1684.
LIU Xue-Shen, CHI Yu-Hua, DING Pei-Zhu. Symplectic Schemes and the Shooting Method for Eigenvalues of the Schrödinger Equation[J]. Chin. Phys. Lett., 2004, 21(9): 1681-1684.
|