Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution
-
Abstract
We present an analytical solution for fluid velocity field distribution of polyelectrolyte DNA. Both the electric field force and the viscous force in the DNA solution are considered under a suitable boundary condition. The solution of electric potential is analytically obtained by using the linearized Poisson--Boltzmann equation. The fluid velocity along the electric field is dependent on the cylindrical radius and concentration. It is shown that the electric field-induced fluid velocity will be increased with the increasing cylindrical radius, whose distribution also varies with the concentration
Article Text
-
-
-
About This Article
Cite this article:
ZHANG Ling-Yun, WANG Peng-Ye. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution[J]. Chin. Phys. Lett., 2008, 25(10): 3818-3821.
ZHANG Ling-Yun, WANG Peng-Ye. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution[J]. Chin. Phys. Lett., 2008, 25(10): 3818-3821.
|
ZHANG Ling-Yun, WANG Peng-Ye. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution[J]. Chin. Phys. Lett., 2008, 25(10): 3818-3821.
ZHANG Ling-Yun, WANG Peng-Ye. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution[J]. Chin. Phys. Lett., 2008, 25(10): 3818-3821.
|