N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation
-
Abstract
We concentrate on finding exact solutions for a generalized variable-coefficient Korteweg--de Vries equation of physically significance. The analytic N-soliton solution in Wronskian form for such a model is postulated and verified by direct substituting the solution into the bilinear form by virtue of the Wronskian technique. Additionally, the bilinear auto-Bäcklund transformation between the (N-1)- and N-soliton solutions is verified.
Article Text
-
-
-
About This Article
Cite this article:
XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian. N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation[J]. Chin. Phys. Lett., 2008, 25(11): 3890-3893.
XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian. N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation[J]. Chin. Phys. Lett., 2008, 25(11): 3890-3893.
|
XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian. N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation[J]. Chin. Phys. Lett., 2008, 25(11): 3890-3893.
XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian. N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation[J]. Chin. Phys. Lett., 2008, 25(11): 3890-3893.
|