An Artificially Garnet Crystal Materials Using In Terahertz Waveguide
-
Abstract
A hypothesis is brought forward that the materials with low propagation loss in both optical and microwave band may exhibit good performance in terahertz (THz) band because THz wave band interspaces those two wave bands. For the purpose of exploring a kind of low-loss material for THz waveguide, Lu2.1Bi0.9Fe5O12(LuBiIG) garnet films are prepared by liquid phase epitaxy (LPE) method on a gadolinium~gallium~garnet (GGG) substrate from lead-free flux because of the good properties in both optical and microwave bands. In microwave band, the ferromagnetic resonance (FMR) linewidth of the film 28710;H=2.8-5.1Oe; in optical band, the optical absorption coefficient is 600cm-1 at visible range and about 100-170cm-1 when the wavelength is longer than 800nm. In THz range, our hypothesis is well confirmed by a THz-TDS measurement which shows that the absorbance of the film for THz wave is 0.05-0.3cm-1 and the minimum value appears at 2.3THz. This artificial ferromagnetic material holds a great promise for magnetic field tunable THz devices such as waveguide, modulator or switch.
Article Text
-
-
-
About This Article
Cite this article:
YANG Qing-Hui, ZHANG Huai-Wu, LIU Ying-Li, WEN Qi-Ye, ZHA Jie. An Artificially Garnet Crystal Materials Using In Terahertz Waveguide[J]. Chin. Phys. Lett., 2008, 25(11): 3957-3960.
YANG Qing-Hui, ZHANG Huai-Wu, LIU Ying-Li, WEN Qi-Ye, ZHA Jie. An Artificially Garnet Crystal Materials Using In Terahertz Waveguide[J]. Chin. Phys. Lett., 2008, 25(11): 3957-3960.
|
YANG Qing-Hui, ZHANG Huai-Wu, LIU Ying-Li, WEN Qi-Ye, ZHA Jie. An Artificially Garnet Crystal Materials Using In Terahertz Waveguide[J]. Chin. Phys. Lett., 2008, 25(11): 3957-3960.
YANG Qing-Hui, ZHANG Huai-Wu, LIU Ying-Li, WEN Qi-Ye, ZHA Jie. An Artificially Garnet Crystal Materials Using In Terahertz Waveguide[J]. Chin. Phys. Lett., 2008, 25(11): 3957-3960.
|