Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator
-
Abstract
The optical emission spectroscopy of a surface dielectric barrier discharge plasma aerodynamic actuator is investigated with different electrode configurations, applied voltages and driving frequencies. The rotational temperature of N2 (C3IIu) molecule is calculated according to its rotational emission band near 380.5nm. The average electron energy of the discharge is evaluated by emission intensity ratio of first negative system to second positive system of N2. The rotational temperature is sensitive to the inner space of an electrode pair. The average electron energy shows insensitivity to the applied voltage, the driving frequency and the electrode configuration.
Article Text
-
-
-
About This Article
Cite this article:
LI Ying-Hong, WU Yun, JIA Min, ZHOU Zhang-Wen, GUO Zhi-Gang, Yi-Kang. Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator[J]. Chin. Phys. Lett., 2008, 25(11): 4068-4071.
LI Ying-Hong, WU Yun, JIA Min, ZHOU Zhang-Wen, GUO Zhi-Gang, Yi-Kang. Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator[J]. Chin. Phys. Lett., 2008, 25(11): 4068-4071.
|
LI Ying-Hong, WU Yun, JIA Min, ZHOU Zhang-Wen, GUO Zhi-Gang, Yi-Kang. Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator[J]. Chin. Phys. Lett., 2008, 25(11): 4068-4071.
LI Ying-Hong, WU Yun, JIA Min, ZHOU Zhang-Wen, GUO Zhi-Gang, Yi-Kang. Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator[J]. Chin. Phys. Lett., 2008, 25(11): 4068-4071.
|