Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED

  • Received Date: May 28, 2008
  • Published Date: November 30, 2008
  • Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given.
  • Article Text

  • [1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
    [2] Neumark M A and Akad I 1940 Nauk SSSR, Ser. Mat.4 277
    [3] Ahnert S E and Payne M C 2005 Phys. Rev. A 71 012330
    [4] Ahnert S E and Payne M C 2004 Phys. Rev. A 69012312
    [5] Ahnert S E and Payne M C 2006 Phys. Rev. A 73022333
    [6] Chen P X, Bergou J A, Zhu S Y and Guo G C 2007 Phys.Rev. A 76 060303
    [7] Franke-Arnold S et al 2001 Phys. Rev. A 63 052301
    [8] Huttner B et al 1996 Phys. Rev. A 54 3783
    [9] Clarke R B M, Chefles A, Barnett S M, and Riis E 2001 Phys.Rev. A 63 040305(R)
    [10] Clarke R B M et al 2001 Phys. Rev. A 64012303
    [11] Mohseni M, Steinberg A M and Bergou J A 2004 Phys.Rev. Lett. 93 200403
    [12] C. Monroe 2002 Nature 416 238
    [13] Barenco A, Deutsch D and Ekert A 1995 Phys. Rev.Lett. 74 4083
    [14] Guo G P et al 2002 Phys. Rev. A 65 042102
    [15] Shu J et al 2007 Phys. Rev. A 75 044302
    [16] Zhou Y L, Yang L J and Dai H Y 2007 Chin. Phys.Lett. 24 3304
    [17] Sleator T, and Weinfuture H 1995 Phys. Rev. Lett.74 4087
    [18] Huttner B et al 1996 Phys. Rev. A 54 3783
    [19] Brune M et al 1996 Phys. Rev. Lett. 77 4887
    [20] Song K H and Zhang W J 2001 Phys. Lett. A {\bf290 214
    [21] Rempe G, Schmidt-Kaler F and Walther H 1990 Phys.Rev. Lett. 64 2783
    [22] Rauschenbeutel A et al 1999 Phys. Rev. Lett. {\bf83 5166
  • Related Articles

    [1]RONG Ji-Li, WANG Xi, CAO Mao-Sheng, WANG Da-Wei, ZHOU Wei, XU Tian-Fu. Dynamic Tensile Behavior and Fracture Mechanism of Polymer Composites Embedded with Tetraneedle-Shaped ZnO Nanowhiskers [J]. Chin. Phys. Lett., 2010, 27(6): 066201. doi: 10.1088/0256-307X/27/6/066201
    [2]LIN Zhen-Quan, KONG Xiang-Mu. Critical Behaviour of the Gaussian Model on Sierpinski Carpets [J]. Chin. Phys. Lett., 2001, 18(7): 882-884.
    [3]ZHAN Meng, HU Gang, WANG Xin-Gang. Dynamic Behavior of Phase Synchronization of Chaos [J]. Chin. Phys. Lett., 2000, 17(5): 332-334.
    [4]MA Yu-gang, SU Qian-min, SHEN Wen-qing, WANG Jian-song, CAI Xiang-zhou, FANG De-qing. Isospin Effects of Critical Behavior in Lattice Gas Model [J]. Chin. Phys. Lett., 1999, 16(4): 256-258.
    [5]TIAN Ju-ping, YAO Kai-lun. Fractal Nature of Viscous Fingering in Random Sierpinski Carpet [J]. Chin. Phys. Lett., 1998, 15(7): 507-509.
    [6]YE Chao, NING Zhao-yuan, GUO Yu-hua, WANG Xiang-ying, XIN Yu, WANG Yuan-chang, SHEN Ming-rong, WANG Hao. Fractal Aggregation Behavior in Amorphous Silicon Nitride Films [J]. Chin. Phys. Lett., 1997, 14(6): 446-448.
    [7]WANG Yingzong. Improved Method of Behavior Type Analysis [J]. Chin. Phys. Lett., 1994, 11(7): 435-438.
    [8]JIANG Xingliu, HAN Lijun. Damage Patterns and Fractal Behavior of Polymeric Target Bombarded by Intense Pulsed Electron Beams [J]. Chin. Phys. Lett., 1992, 9(8): 407-410.
    [9]JIN Guojun, FENG Bihua, FENG Duan. OPTICAL DIFFRACTION ON SIERPINSKI CARPET [J]. Chin. Phys. Lett., 1988, 5(1): 9-12.
    [10]ZHOU Jie, JI Xiujiang, LI Shuying, LIN Xulun. ANNEALING DYNAMIC BEHAVIOR OF Rh ENERGY LEVELS IN n-Si SAMPLES [J]. Chin. Phys. Lett., 1987, 4(12): 565-568.

Catalog

    Article views (2) PDF downloads (715) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return