Tunable Photonic Crystal Mach--Zehnder Interferometer Based on Self-collimation Effect

  • A theoretical model for tunable Mach--Zehnder interferometers (TMZIs) constructed in a two-dimensional photonic crystal (2D PhC) is proposed. The 2D PhC consists of a square lattice of cylindric air holes in silicon. The TMZI includes two mirrors and two splitters. Light propagates between them employing a self-collimation effect. The two interferometer branches have different path lengths. Parts of the longer branch are infiltrated with a kind of liquid crystal (LC) with ordinary and extraordinary refractive indices 1.522 and 1.706, respectively. The transmission spectra at two TMZI output ports are in the shape of sinusoidal curves and have a uniform peak spacing 0.0017c/a in the frequency range from 0.26c/a to 0.27c/a. When the effective refractive index neff of the liquid crystal is increased from 1.522 to 1.706, the peaks shift to the lower frequencies over 0.0017c/a while the peak spacing is almost kept unchanged. Thus this TMZI can work as a tunable power splitter or an optical switch. For the central operating wavelength around 1550nm, its dimensions are only about tens of micron. Thus this device may be applied to photonic integrated circuits.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return