Electronic Transport Properties of (7,0) Semiconducting Carbon Nanotube
-
Abstract
Electronic transport properties of a finite (7,0) carbon nanotube (CNT) coupled to Au (111) surfaces are investigated with a fully nonequilibrium Green's functions method combined with the density functional theory. The results show that the coupling effect between the CNT and Au electrode plays an important role in the transport properties, which leads0 to the formation of a high plateau in the transmission spectrum around Fermi energy. In addition, the current-voltage characteristic of the (7,0) CNT coupled to Au electrodes is different from an isolated (7,0) CNT.
Article Text
-
-
-
About This Article
Cite this article:
SONG Jiu-Xu, YANG Yin-Tang, CHAI Chang-Chun, LIU Hong-Xia, DING Rui-Xue. Electronic Transport Properties of (7,0) Semiconducting Carbon Nanotube[J]. Chin. Phys. Lett., 2008, 25(9): 3212-3214.
SONG Jiu-Xu, YANG Yin-Tang, CHAI Chang-Chun, LIU Hong-Xia, DING Rui-Xue. Electronic Transport Properties of (7,0) Semiconducting Carbon Nanotube[J]. Chin. Phys. Lett., 2008, 25(9): 3212-3214.
|
SONG Jiu-Xu, YANG Yin-Tang, CHAI Chang-Chun, LIU Hong-Xia, DING Rui-Xue. Electronic Transport Properties of (7,0) Semiconducting Carbon Nanotube[J]. Chin. Phys. Lett., 2008, 25(9): 3212-3214.
SONG Jiu-Xu, YANG Yin-Tang, CHAI Chang-Chun, LIU Hong-Xia, DING Rui-Xue. Electronic Transport Properties of (7,0) Semiconducting Carbon Nanotube[J]. Chin. Phys. Lett., 2008, 25(9): 3212-3214.
|