Soliton Structure of a Higher Order (2+1)-Dimensional Nonlinear Evolution Equation of Barothropic Relaxing Media beneath High-Frequency Perturbations

  • From the dynamical equation of barothopic relaxing media beneath pressure perturbations, followed with the reductive perturbative analysis, we derive and investigate the soliton structure of a (2+1)-dimensional nonlinear evolution equation describing high-frequency regime of perturbations. Thus, by means of the Hirota's bilinearization method, we unearth three typical patterns of loop-, cusp- and hump-like shapes depending strongly upon a dissipation parameter.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return