Multisymplectic Euler Box Scheme for the KdV Equation
-
Abstract
We investigate the multisymplectic Euler box scheme for the Korteweg--de Vries (KdV) equation. A new completely explicit six-point scheme is derived. Numerical experiments of the new scheme with comparisons to the Zabusky- Kruskal scheme, the multisymplectic 12-point scheme, the narrow box scheme and the spectral method are made to show nice numerical stability and ability to preserve the integral invariant for long-time integration.
Article Text
-
-
-
About This Article
Cite this article:
WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2007, 24(2): 312-314.
WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2007, 24(2): 312-314.
|
WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2007, 24(2): 312-314.
WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2007, 24(2): 312-314.
|