Discussion on Maximally Entangled States of Two Coupled Two-Level Particles by Coherent State Approximation

  • Published Date: May 31, 2006
  • We analyse the best condition for generating the maximally entangled states of the system containing two coupled two-level particles by the coherent approximation method beyond rotating wave approximation. It is found that the maximally entangled states are obtained when the detuning ν and the strength Ω of driving laser satisfy the condition ν/Ω =2.5. The maximum average probability of entangled state pa max(ν, Ω) has the best stability relying on ν and Ω when ν approx 2Ω.
  • Article Text

  • Related Articles

    [1]LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows [J]. Chin. Phys. Lett., 2012, 29(2): 024701. doi: 10.1088/0256-307X/29/2/024701
    [2]G. A. Hoshoudy. Quantum Effects on Rayleigh–Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field [J]. Chin. Phys. Lett., 2010, 27(12): 125201. doi: 10.1088/0256-307X/27/12/125201
    [3]LIU Jian-Xin, LUO Ji-Sheng. Numerical Investigation on Inviscid Instability of Streaky Structures in Incompressible Boundary Layer Flow [J]. Chin. Phys. Lett., 2010, 27(8): 084701. doi: 10.1088/0256-307X/27/8/084701
    [4]Syed Tauseef Mohyud-Din, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation [J]. Chin. Phys. Lett., 2010, 27(6): 060201. doi: 10.1088/0256-307X/27/6/060201
    [5]WANG Li-Feng, YE Wen-Hua, LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers [J]. Chin. Phys. Lett., 2010, 27(2): 025203. doi: 10.1088/0256-307X/27/2/025203
    [6]WANG Li-Feng, YE Wen-Hua, FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids [J]. Chin. Phys. Lett., 2009, 26(7): 074704. doi: 10.1088/0256-307X/26/7/074704
    [7]WANG Li-Feng, YE Wen-Hua, FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid [J]. Chin. Phys. Lett., 2009, 26(1): 014701. doi: 10.1088/0256-307X/26/1/014701
    [8]GAO Qing-Di, ZHANG Jin-Hua, QU Hong-Peng. Pressure Driven Magnetohydrodynamics Instabilities in PeakedPressure Profile Reversed Magnetic Shear Plasmas [J]. Chin. Phys. Lett., 2001, 18(6): 790-792.
    [9]REN Shen-Ming, YU Guo-Yang. Reduced Magnetohydrodynamic Equations in Toroidal Geometry [J]. Chin. Phys. Lett., 2001, 18(4): 556-558.
    [10]ZHOU Guo-cheng, CAI Chun-lin, CAO Jin-bin, ZHANG Yang-ting, CHEN Tao, WANG De-ju. Modified Magnetohydrodynamic Model of Magnetic Reconnection [J]. Chin. Phys. Lett., 1999, 16(6): 461-463.

Catalog

    Article views (0) PDF downloads (501) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return