Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation
-
Abstract
Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.
Article Text
-
-
-
About This Article
Cite this article:
WU Di, GONG Ye, LIU Jin-Yuan, WANG Xiao-Gang, LIU Yue, MA Teng-Cai. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation[J]. Chin. Phys. Lett., 2006, 23(8): 2255-2258.
WU Di, GONG Ye, LIU Jin-Yuan, WANG Xiao-Gang, LIU Yue, MA Teng-Cai. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation[J]. Chin. Phys. Lett., 2006, 23(8): 2255-2258.
|
WU Di, GONG Ye, LIU Jin-Yuan, WANG Xiao-Gang, LIU Yue, MA Teng-Cai. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation[J]. Chin. Phys. Lett., 2006, 23(8): 2255-2258.
WU Di, GONG Ye, LIU Jin-Yuan, WANG Xiao-Gang, LIU Yue, MA Teng-Cai. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation[J]. Chin. Phys. Lett., 2006, 23(8): 2255-2258.
|