Final Governing Equation of Plane Elasticity of Icosahedral Quasicrystals and General Solution Based on Stress Potential Function
-
Abstract
The stress potential function theory for plane elasticity of icosahedral quasicrystals is developed. By introducing stress functions, huge numbers of basic equations involving elasticity of icosahedral quasicrystals are reduced to a single partial differential equation of the 12th order. The general solution of the equation is expressed by 6 analytic functions of complex variable z=x+iy.
Article Text
-
-
-
About This Article
Cite this article:
LI Lian-He, FAN Tian-You. Final Governing Equation of Plane Elasticity of Icosahedral Quasicrystals and General Solution Based on Stress Potential Function[J]. Chin. Phys. Lett., 2006, 23(9): 2519-2521.
LI Lian-He, FAN Tian-You. Final Governing Equation of Plane Elasticity of Icosahedral Quasicrystals and General Solution Based on Stress Potential Function[J]. Chin. Phys. Lett., 2006, 23(9): 2519-2521.
|
LI Lian-He, FAN Tian-You. Final Governing Equation of Plane Elasticity of Icosahedral Quasicrystals and General Solution Based on Stress Potential Function[J]. Chin. Phys. Lett., 2006, 23(9): 2519-2521.
LI Lian-He, FAN Tian-You. Final Governing Equation of Plane Elasticity of Icosahedral Quasicrystals and General Solution Based on Stress Potential Function[J]. Chin. Phys. Lett., 2006, 23(9): 2519-2521.
|