Molecular Dynamics Simulation of Cage Effect in the Glass Transition of Argon
-
Abstract
The glass transition process of argon is studied by molecular dynamics simulations with Lennard-Jones potential. The cage effect appears at about 24K. The Lindemann length of argon is found to be 0.55Å. Two relaxation processes are clearly observed near the glass transition temperature, which is in agreement with the mode-coupling theory.
Article Text
-
-
-
About This Article
Cite this article:
SUN Yong-Li, SUN Min-Hua, LI Jia-Yun, WANG Ai-Ping, MA Cong-Xiao, CHENG Wei-Dong, LIU Fang. Molecular Dynamics Simulation of Cage Effect in the Glass Transition of Argon[J]. Chin. Phys. Lett., 2006, 23(10): 2830-2833.
SUN Yong-Li, SUN Min-Hua, LI Jia-Yun, WANG Ai-Ping, MA Cong-Xiao, CHENG Wei-Dong, LIU Fang. Molecular Dynamics Simulation of Cage Effect in the Glass Transition of Argon[J]. Chin. Phys. Lett., 2006, 23(10): 2830-2833.
|
SUN Yong-Li, SUN Min-Hua, LI Jia-Yun, WANG Ai-Ping, MA Cong-Xiao, CHENG Wei-Dong, LIU Fang. Molecular Dynamics Simulation of Cage Effect in the Glass Transition of Argon[J]. Chin. Phys. Lett., 2006, 23(10): 2830-2833.
SUN Yong-Li, SUN Min-Hua, LI Jia-Yun, WANG Ai-Ping, MA Cong-Xiao, CHENG Wei-Dong, LIU Fang. Molecular Dynamics Simulation of Cage Effect in the Glass Transition of Argon[J]. Chin. Phys. Lett., 2006, 23(10): 2830-2833.
|