First-Principles Study on Elastic Properties and Electronic Structures of Ti-Based Binary and Ternary Shape Memory Alloys
-
Abstract
The elastic properties and electronic structure of B2 phase binary TiM (M=Fe, Co, Ni, Pd, Pt and Au) and ternary Ti50Ni43.75Pd6.25, Ti50Ni43.75Cu6.25 shape memory alloys are studied by the plane-wave psedudopotential method within the local density approximation. The elastic constants and density of states are calculated. Our calculations show that the martensitic transformation behaviour of these alloys is closely related to their elastic properties. The Ti d DOS at the Fermi level is mainly
responsible for the B2 phase stability of these alloys.
Article Text
-
-
-
About This Article
Cite this article:
TAN Chang-Long, CAI Wei, ZHU Jing-Chuan. First-Principles Study on Elastic Properties and Electronic Structures of Ti-Based Binary and Ternary Shape Memory Alloys[J]. Chin. Phys. Lett., 2006, 23(10): 2863-2866.
TAN Chang-Long, CAI Wei, ZHU Jing-Chuan. First-Principles Study on Elastic Properties and Electronic Structures of Ti-Based Binary and Ternary Shape Memory Alloys[J]. Chin. Phys. Lett., 2006, 23(10): 2863-2866.
|
TAN Chang-Long, CAI Wei, ZHU Jing-Chuan. First-Principles Study on Elastic Properties and Electronic Structures of Ti-Based Binary and Ternary Shape Memory Alloys[J]. Chin. Phys. Lett., 2006, 23(10): 2863-2866.
TAN Chang-Long, CAI Wei, ZHU Jing-Chuan. First-Principles Study on Elastic Properties and Electronic Structures of Ti-Based Binary and Ternary Shape Memory Alloys[J]. Chin. Phys. Lett., 2006, 23(10): 2863-2866.
|