New Mechanism for Enhancing Ash Removal Efficiency and Reducing Tritium Inventory
-
Abstract
A new mechanism is suggested to suppress ash particle back streams in the divertor region of our fusion experimental breeder (FEB) reactor for enhancing the ash removal efficiency and reducing the tritium inventory by applications of the nonlinear effect of high power rf ponderomotive force potential which reflects the plate-released and re-ionized He+ back to the plate. Meanwhile, the potential does not hinder α particles, which are coming from scraping of the layer, flowing to the target plate. However, it does stop tritium ions flowing to the target. Based on the FEB design parameters, our calculations have shown that the ash removal efficiency can be improved by as much as 40% if the parallel component of rf field 150--200V/cm is applied to the location at a perpendicular distance L=20cm apart from the plate and the plate-recycling neutral helium atom energy is about 0.75eV, at the same time, the tritium inventory can be reduced to some extent.
Article Text
-
-
-
About This Article
Cite this article:
LI Cheng-Yue, DENG Bai-Quan, YAN Jian-Cheng. New Mechanism for Enhancing Ash Removal Efficiency and Reducing Tritium Inventory[J]. Chin. Phys. Lett., 2007, 24(1): 155-157.
LI Cheng-Yue, DENG Bai-Quan, YAN Jian-Cheng. New Mechanism for Enhancing Ash Removal Efficiency and Reducing Tritium Inventory[J]. Chin. Phys. Lett., 2007, 24(1): 155-157.
|
LI Cheng-Yue, DENG Bai-Quan, YAN Jian-Cheng. New Mechanism for Enhancing Ash Removal Efficiency and Reducing Tritium Inventory[J]. Chin. Phys. Lett., 2007, 24(1): 155-157.
LI Cheng-Yue, DENG Bai-Quan, YAN Jian-Cheng. New Mechanism for Enhancing Ash Removal Efficiency and Reducing Tritium Inventory[J]. Chin. Phys. Lett., 2007, 24(1): 155-157.
|