Lattice Boltzmann Model and Geophysical Hydrodynamic Equation
-
Abstract
A lattice Boltzmann equation model in a rotating system is developed by introducing the Coriolis force effect. The geophysical hydrodynamic equation can be derived from this model. Numerical computations are performed to simulate the cylindrical annulus experiment and Benard convection. The numerical results have shown the flow behaviour of large-scale geostrophic current and Benard convection cells, which verifies the applicability of this model in both theory and experiment.
Article Text
-
-
-
About This Article
Cite this article:
FENG Shi-De, YANG Jing-Long, GAO Xian-Lin, JI Zhong-Zhen. Lattice Boltzmann Model and Geophysical Hydrodynamic Equation[J]. Chin. Phys. Lett., 2002, 19(3): 358-361.
FENG Shi-De, YANG Jing-Long, GAO Xian-Lin, JI Zhong-Zhen. Lattice Boltzmann Model and Geophysical Hydrodynamic Equation[J]. Chin. Phys. Lett., 2002, 19(3): 358-361.
|
FENG Shi-De, YANG Jing-Long, GAO Xian-Lin, JI Zhong-Zhen. Lattice Boltzmann Model and Geophysical Hydrodynamic Equation[J]. Chin. Phys. Lett., 2002, 19(3): 358-361.
FENG Shi-De, YANG Jing-Long, GAO Xian-Lin, JI Zhong-Zhen. Lattice Boltzmann Model and Geophysical Hydrodynamic Equation[J]. Chin. Phys. Lett., 2002, 19(3): 358-361.
|