Random Matrix Approach to a Special Kind of Quantum Random Hopping
-
Abstract
We use the random matrix method to study one kind of quantum random hopping. The Hamiltonian is a non-Hermitian matrix with some negative subdiagonal elements. Using potential theory, we calculate the eigenvalue density of an N x N matrix when N goes to infinity. We also obtain a least upper bound of the module of eigenvalues. In view of phase string theory in high temperautre superconductor, this model connects with localization-delocalization transition.
Article Text
-
-
-
About This Article
Cite this article:
YANG Sen, ZHAI Hui. Random Matrix Approach to a Special Kind of Quantum Random Hopping[J]. Chin. Phys. Lett., 2002, 19(5): 628-631.
YANG Sen, ZHAI Hui. Random Matrix Approach to a Special Kind of Quantum Random Hopping[J]. Chin. Phys. Lett., 2002, 19(5): 628-631.
|
YANG Sen, ZHAI Hui. Random Matrix Approach to a Special Kind of Quantum Random Hopping[J]. Chin. Phys. Lett., 2002, 19(5): 628-631.
YANG Sen, ZHAI Hui. Random Matrix Approach to a Special Kind of Quantum Random Hopping[J]. Chin. Phys. Lett., 2002, 19(5): 628-631.
|