Why the Constituent Quark Model Works for Baryon Magnetic Moments
-
Abstract
Starting from quantum chromodynamics, we find that aside from some terms that contribute only via the mixing of different Fock components, the baryon magnetic moment can be expressed as μB = ΣqQq/(2 < k0>q) (2Sq-2S-q +Lq–L-q) , where < k0>q is the q flavor quark’s average relativistic energy inside the baryon, and Sq, Lq, S-q , L-q are quark and antiquark’s relativistic spin and orbital contributions to baryon spin. We demonstrate that within an error of 1/6, this expression can be parameterized as ΣqQq/ ( 2mqeff )(2sq-2s-q), (where s is the nonrelativistic Pauli spin contribution and mqeff is of the order of the constituent quark mass) which is just what the nonrelativistic constituent quark model adopts to give a good account of octet baryon magnetic moments.
Article Text
-
-
-
About This Article
Cite this article:
CHEN Xiang-song, QING Di, WANG Fan. Why the Constituent Quark Model Works for Baryon Magnetic Moments[J]. Chin. Phys. Lett., 1999, 16(6): 403-405.
CHEN Xiang-song, QING Di, WANG Fan. Why the Constituent Quark Model Works for Baryon Magnetic Moments[J]. Chin. Phys. Lett., 1999, 16(6): 403-405.
|
CHEN Xiang-song, QING Di, WANG Fan. Why the Constituent Quark Model Works for Baryon Magnetic Moments[J]. Chin. Phys. Lett., 1999, 16(6): 403-405.
CHEN Xiang-song, QING Di, WANG Fan. Why the Constituent Quark Model Works for Baryon Magnetic Moments[J]. Chin. Phys. Lett., 1999, 16(6): 403-405.
|