Influence of Particle Coordination Number in Nanoporous TiO2 Films on the Performance of Dye-Sensitized Solar Cell Modules
-
Abstract
The average particle coordination number, one of the characters concerning the pore size distribution in the films, was introduced in dye-sensitized solar cell (DSC) modules with the size of 15cm × 20cm and the active area of 187.2cm2 to estimate the performance of a TiO2 nanoporous film, which is critical to the future DSC production. The current--voltage measurement of the DSC modules indicates that the average particle coordination number in the range of 4--5 typically appears in nanocrystalline TiO2 films used in the DSC modules and that the average coordination number could provide a very valuable way to evaluate the performance of nanoporous TiO2 films.
Article Text
-
-
-
About This Article
Cite this article:
HU Lin-Hua, DAI Song-Yuan, WANG Kong-Jia. Influence of Particle Coordination Number in Nanoporous TiO2 Films on the Performance of Dye-Sensitized Solar Cell Modules[J]. Chin. Phys. Lett., 2005, 22(2): 493-495.
HU Lin-Hua, DAI Song-Yuan, WANG Kong-Jia. Influence of Particle Coordination Number in Nanoporous TiO2 Films on the Performance of Dye-Sensitized Solar Cell Modules[J]. Chin. Phys. Lett., 2005, 22(2): 493-495.
|
HU Lin-Hua, DAI Song-Yuan, WANG Kong-Jia. Influence of Particle Coordination Number in Nanoporous TiO2 Films on the Performance of Dye-Sensitized Solar Cell Modules[J]. Chin. Phys. Lett., 2005, 22(2): 493-495.
HU Lin-Hua, DAI Song-Yuan, WANG Kong-Jia. Influence of Particle Coordination Number in Nanoporous TiO2 Films on the Performance of Dye-Sensitized Solar Cell Modules[J]. Chin. Phys. Lett., 2005, 22(2): 493-495.
|