Analysis of High Accuracy Conservation-Element and Solution-Element Schemes
-
Abstract
We propose a technique to construct higher accuracy conservation element and solution element (CE/SE) schemes. A second-order CE/SE scheme is established and its stability condition is examined on the basis of the von Neumann necessary condition. From the viewpoints of accuracy and efficiency, the applied range of the one-order CE/SE scheme and the high-order ones is discussed through some numerical examples.
Article Text
-
-
-
About This Article
Cite this article:
LIU Kai-Xin, WANG Jing-Tao. Analysis of High Accuracy Conservation-Element and Solution-Element Schemes[J]. Chin. Phys. Lett., 2004, 21(11): 2085-2088.
LIU Kai-Xin, WANG Jing-Tao. Analysis of High Accuracy Conservation-Element and Solution-Element Schemes[J]. Chin. Phys. Lett., 2004, 21(11): 2085-2088.
|
LIU Kai-Xin, WANG Jing-Tao. Analysis of High Accuracy Conservation-Element and Solution-Element Schemes[J]. Chin. Phys. Lett., 2004, 21(11): 2085-2088.
LIU Kai-Xin, WANG Jing-Tao. Analysis of High Accuracy Conservation-Element and Solution-Element Schemes[J]. Chin. Phys. Lett., 2004, 21(11): 2085-2088.
|