Characteristics of Period-Adding Bursting Bifurcation Without Chaos in the Chay Neuron Model
-
Abstract
A period-adding bursting sequence without bursting-chaos in the Chay neuron model is studied by bifurcation analysis. The genesis of each periodic bursting is separately evoked by the corresponding periodic spiking patterns through two period-doubling bifurcations, except for the period-1 bursting occurring via Hopf bifurcation. Hence, it is concluded that this period-adding bursting bifurcation without chaos has a compound bifurcation structure closely related to period-doubling bifurcations of periodic spiking in essence.
Article Text
-
-
-
About This Article
Cite this article:
YANG Zhuo-Qin, LU Qi-Shao. Characteristics of Period-Adding Bursting Bifurcation Without Chaos in the Chay Neuron Model[J]. Chin. Phys. Lett., 2004, 21(11): 2124-2127.
YANG Zhuo-Qin, LU Qi-Shao. Characteristics of Period-Adding Bursting Bifurcation Without Chaos in the Chay Neuron Model[J]. Chin. Phys. Lett., 2004, 21(11): 2124-2127.
|
YANG Zhuo-Qin, LU Qi-Shao. Characteristics of Period-Adding Bursting Bifurcation Without Chaos in the Chay Neuron Model[J]. Chin. Phys. Lett., 2004, 21(11): 2124-2127.
YANG Zhuo-Qin, LU Qi-Shao. Characteristics of Period-Adding Bursting Bifurcation Without Chaos in the Chay Neuron Model[J]. Chin. Phys. Lett., 2004, 21(11): 2124-2127.
|