Low-Energy Rate Enhancement in Recombination Processes of Electrons into Bare Uranium Ions

  • Received Date: November 29, 2006
  • Published Date: January 31, 2007
  • Based on the Dirac--Fork--Slater method combined with the multichannel quantum defect theory, the recombination processes of electrons into bare uranium ions (U 92+ ) are investigated in the relative energy range close to zero, and the x-ray spectrum emitted in the direct radiative recombination and cascades processes are simulated. Compared with the recent measurement, it is found that the rate enhancement comes from the additional populations on high Rydberg states. These additional populations may be produced by other recombination mechanisms, such as the external electric-magnetic effects and the many-body correlation effects, which still remains an open problem.
  • Article Text

  • [1] Shi W, Bohm S, Bohme C, Brandau C, Hoffknecht A, Kieslich S,Schippers S, Muller A, Kozhuharov C, Bosch F, Franzke B, Mokler P H,Steck M, Stohlker Th and Stachura Z 2001 Eur. Phys. J. D 15 145 and references therein
    [2] Reuschl R, Gumberidze A, Fritzsche S, Kozhuharov C, Spillmann U,Stohlker Th, Surzhykov A and Tashenov S 2005 GSI Scientific Report2004 GSI 2005-1 p 202
    [3] Gumberidze A, Stohlker Th, Banas D, Beckert K, Beller P,Beyer H F, Bosch F, Hagmann S, Kozhuharov C, Liesen D, Nolden F, Ma X,Mokler P H, Steck M, Sierpowski D and Tashenov S 2005 Phys. Rev. Lett. 94 23001
    [4] Heerlein C, Zwicknagel G and Toepffer C 2002 Phys. Rev.Lett. 89 083202-1
    [5] Tong X M, Liu L and Li J M 1994 Phys. Rev. A 494641
    [6] Lee C M 1978 Phys. Rev. A 17 566
    [7] Lee C M and Pratt R H 1975 Phys. Rev. A 12 1825
    [8] Li J M and Zhao Z X 1982 Acta Phys. Sin. 31 97(in Chinese)
    [9] Wang J G, Tong X M and Li J M 1996 Acta Phys. Sin. 45 13 and references therein (in Chinese)
    [10] Schippers S, Muller A, Gwinner G, Linkemann J,Saghiri A A and Wolf A 2001 Astrophys. J. 555 1027
    [11] Andersen L H, Pan G Y and Schmidt H T 1992 Phys. Rev. A 45 7868
    [12] Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys.Commun. 94 249
    [13] Bethe H A and Salpeter E E 1957 Quantum Mechanics of One andTwo-Electron Systems (Berlin: Springer)
    [14] Zeng S L, Pang J Q, Li P, Li Y M, Yan J and Wang J G 2004 Acta Phys. Sin. 54 6 (in Chinese)
  • Related Articles

    [1]Saburo Tanaka, Tomohiro Akai, Makoto Takemoto, Yoshimi Hatsukade, Takeyoshi Ohtani, Yoshio Ikeda, Shuichi Suzuki. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer [J]. Chin. Phys. Lett., 2010, 27(8): 088503. doi: 10.1088/0256-307X/27/8/088503
    [2]YU Long-Bao, XUE Zheng-Yuan. Implementation of a Quantum Conditional Phase Gate for the Quantum Fourier Transform in Circuit QED [J]. Chin. Phys. Lett., 2010, 27(7): 070305. doi: 10.1088/0256-307X/27/7/070305
    [3]XIA Yan, SONG Jie, SONG He-Shan. Robust Implementation of a Nonlocal N-Qubit Phase Gate by Interference of Polarized Photons [J]. Chin. Phys. Lett., 2008, 25(9): 3150-3153.
    [4]ZHENG An-Shou, SHEN Xiao-Fang, LIU Ji-Bing, BI Jie, DU Qiu-Jiao. Preparation of W State with Superconducting Quantum-Interference Devices in a Cavity via Adiabatic Passage [J]. Chin. Phys. Lett., 2008, 25(4): 1195-1197.
    [5]FAN Qiu-Bo. One-Step Implementation of Mulitqubit Quantum Phase Gate in a Cavity QED System [J]. Chin. Phys. Lett., 2008, 25(2): 379-382.
    [6]ZHENG An-Shou, LIU Ji-Bing, XIANG Dong, LIU Cui-Lan, YUAN Hong. An Efficient Scheme for Implementing an N-Qubit Toffoli Gate with Superconducting Quantum-Interference Devices in Cavity QED [J]. Chin. Phys. Lett., 2007, 24(9): 2489-2492.
    [7]LIU Qi, YE Liu. Implementation of a Two-Atom (swap)1/2 Gate in Cavity QED [J]. Chin. Phys. Lett., 2007, 24(3): 599-601.
    [8]ZHENG An-Shou, WAN Zhen-Zhu, BI Jie. Realization of Greenberg--Horne--Zeilinger (GHZ) and W Entangled States with Multiple Superconducting Quantum-Interference Device Qubits in Cavity QED [J]. Chin. Phys. Lett., 2006, 23(12): 3267-3270.
    [9]CHEN Chang-Yong, GAO Ke-Lin. Construction of Controlled-NOT Gate with Thermal Ions [J]. Chin. Phys. Lett., 2005, 22(4): 801-803.
    [10]PAN Hai-Zhong, KUANG Le-Man. Thermal Entanglement in Superconducting Quantum-Interference-Device Qubits Coupled to Cavity Field [J]. Chin. Phys. Lett., 2004, 21(3): 424-427.

Catalog

    Article views (0) PDF downloads (678) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return