Influence of Photon Mass on Vacuum Birefringence Experiment

  • Received Date: November 30, 2006
  • Published Date: March 31, 2007
  • Influence of photon mass on vacuum birefringence experiment is analysed according to the nonlinearities of vacuum quantum electrodynamics for the light propagation through an intense electromagnetic field. It is shown that although the photon mass will cause a change of the refractive indices n and n|| of vacuum birefringence, the difference n||-n is unchanged, which means that the effect of photon mass cannot be observed in vacuum birefringence experiment.
  • Article Text

  • [1] Tu L C, Luo J and Gillies G T 2005 Rep. Prog. Phys. 68 77
    [2] Tu L C, Ye H L and Luo J 2005 Chin. Phys. Lett. 22 33057
    [3] Fischbach E, Kloor H, Langel R A, Lui A T Y and Peredo M 1994 Phys. Rev. Lett. 73 514
    [4] Davis L, Goldhaber A S and Nieto M M 1975 Phys. Rev.Lett. 35 1402
    [5] Luo J et al 2003 Phys. Rev. Lett. 90 081801
    [6] Lakes R 1998 Phys. Rev. Lett. 80 1826
    [7] Euler E 1936 Ann. Phys. (Leipzig) 26 398
    [8] Heisenberg W and Euler E 1936 Z. Phys. 98 714
    [9] Kremer H F1965 Phys. Rev. 139 B254
    [10] Schwinger J 1951 Phys. Rev. 82 664
    [11] Cantatore G, Valle F D and Milotti E 1991 Phys. Lett. B 265 418
    [12] Ni W T, Tsubono K and Mio N 1991 Mod. Phys. Lett. A 40 3671
    [13] Wu J S, Ni W T and Chen S J 2004 Class Quantum Grav. 21 S1259
    [14] Adler S L 1971 Ann. Phys. (N.Y.) 67 599
    [15] Iacopini E and Zavattini E 1979 Phys. Lett. B 85 151
    [16] Pengo R et al 1998 Frontier Tests of QED andPhysics of the Vacuum ed Zavattini E et al (Sofia: Heron Press) p 59
    [17] Zavattini E and Zavattini G 2006 Phys. Rev. Lett. 96 110406
    [18] Nezrick F 1998 Frontier Tests of QED and Physics ofthe Vacuum ed Zavattini E et al (Sofia: Heron Press) p 71
    [19] Ni W T 1998 Frontier Tests of QED and Physics of theVacuum ed Zavattini E et al (Sofia: Heron Press) p 83
    [20] Brezin E and Itzykson C 1971 Phys. Rev. D 315
  • Related Articles

    [1]Man Xing, Jun Wang, Xi Zhao, Shushan Zhou. The Role of Multi-Electron and Multi-Orbital Effects in High-Order Harmonic Generation of Benzonitrile Molecules [J]. Chin. Phys. Lett., 2025, 42(4): 043201. doi: 10.1088/0256-307X/42/4/043201
    [2]GE Yu-Cheng. Laser Phase Relations of High-Order Harmonic Generation [J]. Chin. Phys. Lett., 2006, 23(9): 2461-2464.
    [3]WANG Bing-Bing, CHEN Jing, LIU Jie, LI Xiao-Feng, FU Pan-Ming. Carrier Envelope Phase Controlled High-Order Harmonic Generation in Ultrashort Laser Pulse [J]. Chin. Phys. Lett., 2005, 22(9): 2237-2240.
    [4]WANG Bing-Bing, CHENG Tai-Wang, LI Xiao-Feng, FU Pan-Ming. High-Harmonic Generation by Initial Coherent States in a Short Laser Pulse [J]. Chin. Phys. Lett., 2004, 21(9): 1727-1729.
    [5]CHENG Xiao-Man, YAO Su-Wei, LI Cheng-Quan, MANAKA Takaaki, IWAMOTO Mitsumasa. Analysis of Second-Harmonic Generation from CuttbPc LB Film/Metal Interface [J]. Chin. Phys. Lett., 2004, 21(1): 153-155.
    [6]CHENG Tai-Wang, LI Xiao-Feng, AO Shu-Yan, FU Pan-Ming. Interpretation of Plateau in High-Harmonic Generation [J]. Chin. Phys. Lett., 2003, 20(9): 1511-1513.
    [7]LU Wei-Xin, LIU Ting-Ting, YANG Hong, SUN Tao-Heng, GONG Qi-Huang. High-Order Harmonic Generation by Two Non-collinear Coherent Femtosecond Laser Pulses [J]. Chin. Phys. Lett., 2003, 20(6): 848-851.
    [8]LIU Ting-Ting, WANG Da-Wei, LU Wei-Xin, SUN Quan, YANG Hong, JIANG Hong-Bing, GONG Qi-Huang. Fifth-Order Harmonic Generation using a Coherent Controlled Two-Pulsed Optical Field [J]. Chin. Phys. Lett., 2002, 19(9): 1301-1303.
    [9]CHEN Jing, CHEN Shi-Gang, LIU Jie. High-Order Harmonic Generation in the Ionization Process [J]. Chin. Phys. Lett., 2000, 17(10): 723-725.
    [10]GAO Liang-hui, LI Xiao-feng, GUO Dong-sheng, FU Pan-ming. Formal Scattering Approach to High-Order Harmonic Generation [J]. Chin. Phys. Lett., 1999, 16(7): 502-504.
  • Cited by

    Periodical cited type(8)

    1. Tao, X., Yang, A., Quan, Y. et al. Superconductivity and high hardness in scandium-borides under pressure. Physical Chemistry Chemical Physics, 2025. DOI:10.1039/d4cp03740e
    2. Talantsev, E.F., Minkov, V.S., Balakirev, F.F. et al. Comment on "nonstandard superconductivity or no superconductivity in hydrides under high pressure". Physical Review B, 2024, 110(18): 186501. DOI:10.1103/PhysRevB.110.186501
    3. Zhang, Y.-J., Zhu, Y., Li, Q. et al. Record-High Superconducting Transition Temperature in a Ti1-xMnx Alloy with the Rich Magnetic Element Mn. Journal of the American Chemical Society, 2024, 146(30): 21110-21119. DOI:10.1021/jacs.4c06836
    4. Xue, H.-T., Li, J., Chang, Z. et al. Deep-learning potential molecular dynamics simulations of the structural and physical properties of rare-earth metal scandium. Computational Materials Science, 2024. DOI:10.1016/j.commatsci.2024.113072
    5. Wu, X., Guo, S., Guo, J. et al. Robust T c in element molybdenum up to 160 GPa. Chinese Physics B, 2024, 33(4): 047406. DOI:10.1088/1674-1056/ad2a78
    6. He, X., Zhang, C.L., Li, Z.W. et al. Superconductivity discovered in niobium polyhydride at high pressures. Materials Today Physics, 2024. DOI:10.1016/j.mtphys.2023.101298
    7. Zhao, K., Wang, Q., Li, H. et al. Superconductivity in dense scandium-based phosphides. Physical Review B, 2023, 108(17): 174513. DOI:10.1103/PhysRevB.108.174513
    8. Wang, K., Sun, Y., Zhou, M. et al. Superconductivity up to 37.6 K in compressed scandium. Physical Review Research, 2023, 5(4): 043248. DOI:10.1103/PhysRevResearch.5.043248

    Other cited types(0)

Catalog

    Article views (2) PDF downloads (550) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return