Mode-Locking Behaviour in Driven Colloids with Random Pinning
-
Abstract
We find mode-locking steps in simulated force-velocity characteristics of external alternating-force (AF) driven colloids on a disordered substrate. Studies of mode-locking patterns in systems show that mode-locking steps are accompanied with the emergence of a dynamics phase: transverse solid phase. We also study the influence of temperature on the width of mode-locking steps. The mode-locked state is destroyed by thermal fluctuation and the width of mode-locking steps decreases rapidly with increasing temperature. In high velocity and low temperature regimes, due to the appearance of transverse solid phase and microscopically periodic velocity modulation, the step width changes little as temperature is varied.
-
References
[1] Wijnhoven J E G J and Vos W L 1998 Science 281 802 [2] Holtz J H and Asher S A1997 Nature 389 829 [3] Gast A P and Russel W B 1998 Phys. Today 51(12)24 Wichman H H and Korley J N 1998 Nature 445 393 [4] Kumacheva E, Garstecki P, Wu H and Whitesides G M 2003 Phys.Rev. Lett. 91 128301 [5] Weis J J, Tavares J M, Gama M T 2002 Phys. Rev. E 65061201 [6] Ghazali A and Levy J C 2003 Phys. Rev. B 67 064409 [7] Blair D L and Kudrolli A 2003 Phys. Rev. E 67 021302 [8] Strambaugh J, Lathrop D P, Ott E and Losert W 2003 Phys.Rev. E 68 026207 [9] Wen W, Zhang L and Sheng P 2000 Phys. Rev. Lett. 855465 [10] Yeh S, Seul M and Shralman B L 1997 Nature 386 57 [11] Reichardt C and Olson C J 2002 Phys. Rev. Lett. 89 078301 [12] Chen J X, Cao Y G and Jiao Z K 2004 Phys. Rev. E 69 041403 [13] Chen J X and Li Y Q 2004 Phy. Lett. A 325 294 [14] Kolton A B and Dominguez D 2001 Phys. Rev. Lett. 864112 [15] Benz S P, Rzchowski M S, Jinkham M and Lobb C J 1990 Phys.Rev. Lett. 64 693 [16] Sneddon L, Cross M C and Fisher D S 1982 Phys. Rev.Lett. 49 292 [17] Kolton A B, Dominguez D and Jesen N G 2002 Phys. Rev. B 65 184508 [18] Reichhardt C, Olson C J and Hastings M B 2002 Phys. Rev.Lett. 89 024101 [19] Kokubo N, Besseling R, Vinokur V M and Kes P H 2002 Phys.Rev. Lett. 88 247004 [20] Mangold K, Leiderer P and Bechinger C 2003 Phys. Rev. Lett. 90 158302
[21 Reichhardt C, Olson C J and Nori F 1997 Phys. Rev. Lett. 78 2468 -
Related Articles
[1] Yuan Yin, Mei Wu, Xiang Ding, Peiyi He, Qize Li, Xiaowen Zhang, Ruixue Zhu, Ruilin Mao, Xiaoyue Gao, Ruochen Shi, Liang Qiao, Peng Gao. Electron microscopy and spectroscopy investigation of atomic, electronic, and phonon structures of NdNiO2/SrTiO3 interface [J]. Chin. Phys. Lett., 2025, 42(4): 047402. doi: 10.1088/0256-307X/42/4/047402 [2] Shunli Ni, Sheng Ma, Yuhang Zhang, Jie Yuan, Haitao Yang, Zouyouwei Lu, Ningning Wang, Jianping Sun, Zhen Zhao, Dong Li, Shaobo Liu, Hua Zhang, Hui Chen, Kui Jin, Jinguang Cheng, Li Yu, Fang Zhou, Xiaoli Dong, Jiangping Hu, Hong-Jun Gao, Zhongxian Zhao. Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5 [J]. Chin. Phys. Lett., 2021, 38(5): 057403. doi: 10.1088/0256-307X/38/5/057403 [3] KANG Xiu-Bao, TIAN Tai-He, WANG Zhi-Guo. Optical Nonlinearity of Subwavelength Metal-dielectric Gratings: Effects of Strong Anisotropy [J]. Chin. Phys. Lett., 2011, 28(9): 094206. doi: 10.1088/0256-307X/28/9/094206 [4] WEI Meng, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, PAN Xu, HOU Qi-Feng, WANG Zhan-Guo. Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(4): 048102. doi: 10.1088/0256-307X/28/4/048102 [5] HU Lian, K.Y. Szeto, SUN Xin. Influence of Strong Electron-Electron Interaction on the Peierls Transition [J]. Chin. Phys. Lett., 1997, 14(1): 63-66. [6] HU Xiaoming, LIN Zhangda. Observation of the Si(100)-(2 x 2) Phase and Measurements of Low Energy Electron Diffraction I-V Curves [J]. Chin. Phys. Lett., 1995, 12(9): 557-560. [7] XU Tiefeng, CHEN Feng, YAN Dadong, LI Wenzhu (Wenzhou Li). Electron-Phonon Vertex Corrections and Superconductivity inAlkali-Metal-Doped C60 Solids [J]. Chin. Phys. Lett., 1994, 11(4): 242-245. [8] CHEN Changfeng. COMMENT ON SUPERCONDUCTIVITY CAUSED BY STRONG CORRELATION [J]. Chin. Phys. Lett., 1989, 6(2): 96-96. [9] WEI Chongde, LIN Chin, ZHOU Yaqin, WU Ke, Xue Lixin. SUPERCONDUCTIVITY OF LaBa2-xCaxCu3Oy SYSTEM [J]. Chin. Phys. Lett., 1988, 5(7): 301-304. [10] FENG Shiping, MA Benkun. SUPERCONDUCTIVITY CAUSED BY STRONG CORRELATION [J]. Chin. Phys. Lett., 1988, 5(5): 229-232. -
Cited by
Periodical cited type(12)
1. Shu, H., Zhong, W., Feng, J. et al. Observation of superconductivity and ferromagnetism in high-entropy carbide ceramics. Acta Materialia, 2025. DOI:10.1016/j.actamat.2024.120693 2. Ushioda, T., Muranaka, T. Two-gap superconducting states of LaRu3Si2. Physica C: Superconductivity and its Applications, 2024. DOI:10.1016/j.physc.2024.1354583 3. Zhao, Z., Yao, J., Xu, R. et al. Surface-sensitive electronic structure of kagome superconductor CsV3Sb5. Chinese Physics B, 2024, 33(10): 107403. DOI:10.1088/1674-1056/ad7016 4. Meena, P.K., Mandal, M., Manna, P. et al. Superconductivity in breathing kagome-structured C14 Laves phase XOs2(X = Zr, Hf). Superconductor Science and Technology, 2024, 37(7): 075004. DOI:10.1088/1361-6668/ad4a32 5. Liu, J., Zhou, T. Probing the pairing symmetry in kagome superconductors based on the single-particle spectrum. Physical Review B, 2024, 109(5): 054504. DOI:10.1103/PhysRevB.109.054504 6. Wu, X., Chakraborty, D., Schnyder, A.P. et al. Crossover between electron-electron and electron-phonon mediated pairing on the kagome lattice. Physical Review B, 2024, 109(1): 014517. DOI:10.1103/PhysRevB.109.014517 7. Wang, Y., Wu, H., McCandless, G.T. et al. Quantum states and intertwining phases in kagome materials. Nature Reviews Physics, 2023, 5(11): 635-658. DOI:10.1038/s42254-023-00635-7 8. Liu, H., Yao, J., Shi, J. et al. Vanadium-based superconductivity in the breathing kagome compound Ta2 V3.1Si0.9. Physical Review B, 2023, 108(10): 104504. DOI:10.1103/PhysRevB.108.104504 9. Chen, X.-J., Zhang, B.-W., Han, D. et al. Electronic and topological properties of kagome lattice LaV3Si2. Tungsten, 2023, 5(3): 317-324. DOI:10.1007/s42864-022-00200-2 10. Liu, Y., Lyu, M., Liu, J. et al. Structural Determination, Unstable Antiferromagnetism and Transport Properties of Fe-Kagome Y0.5Fe3Sn3 Single Crystals. Chinese Physics Letters, 2023, 40(4): 047102. DOI:10.1088/0256-307X/40/4/047102 11. Wang, Y.. Electronic correlation effects on stabilizing a perfect Kagome lattice and ferromagnetic fluctuation in LaRu3Si2. Journal of University of Science and Technology of China, 2023, 53(7): 0702. DOI:10.52396/JUSTC-2022-0182 12. Rømer, A.T., Bhattacharyya, S., Valentí, R. et al. Superconductivity from repulsive interactions on the kagome lattice. Physical Review B, 2022, 106(17): 174514. DOI:10.1103/PhysRevB.106.174514 Other cited types(0)