Calculations of Optical Rotation from Density Functional Theory

  • Received Date: December 17, 2006
  • Published Date: April 30, 2007
  • Density function theory calculations of frequency-dependent optical
    rotations [αl]ω for three rigid chiral molecules are reported. Calculations have been carried out at the sodium D line frequency, using the ADZP basis set and a wide variety of functionals. Gauge-invariant atomic orbitals are used to guarantee origin-independent values of [α]D. In addition, study of geometry
    dependence of [α]D is reported. Using the geometries optimized at
    the B3LYP/ADZP level, the mean absolute deviation of B3LYP/ADZP and
    experimental [α]D values yields 60.1°/(dm g/cm3). According to our knowledge, this value has not been achieved until now with any other model.
  • Article Text

  • [1] Lowry T M 1964 Optical Rotatory Power (New York: Dover)
    [2] Djerassi C 1960 Optical Rotatory Dispersion: Applications toOrganic Chemistry (New York: McGraw-Hill)
    [3] Polavarapu P L and Zhao C 1998 Chem. Phys. Lett. 296105
    [4] Polavarapu P L and Chakraborty D K 1999 Chem. Phys. 2401
    [5] Cheeseman J R, Frisch M J, Devlin F J and Stephens P J 2000 J.Phys. Chem. A 104 1039
    [6] Stephens P J, Devlin F J, Cheeseman J R and Frisch M J 2001 J. Phys. Chem. A 105 5356
    [7] Grimme S 2001 Chem. Phys. Lett. 339 380
    [8] Autschbach J, Patchkovskii S, Ziegler T, van Gisbergen S J A andBaerends E J 2002 J. Chem. Phys. 117 581
    [9] Amos R D 1982 Chem. Phys. Lett. 87 23
    [10] London F 1937 J. Phys. Radium 8 397
    [11] Rosenfeld L 1928 Z. Phys. 52 161
    [12] Condon E U 1937 Rev. Mod. Phys. 9 432
    [13] Canal Neto A, Muniz E P, Centoducatte R and Jorge F E 2005 J.Mol. Structure (Theochem) 718 219
    [14] Muniz E P and Jorge F E 2006 Int. J. Quantum Chem. 106943
    [15] Jorge F E, Bernardo L M and Muniz E P 2006 J. Theor. Comput.Chem. 5 223
    [16] Rice J E and Handy N C 1991 J. Chem. Phys. 94 4959
    [17] Olsen J, Bak K L, Ruud K, Helgaker T and Jrgensen P 1995 Theor. Chimica Acta 90 421
    [18] Frisch M J, Trucks G W, Schlegel H B et al 2003 Gaussian 03 (Revision-B.05)(Pittsburgh: Gaussian, Inc.)
  • Related Articles

    [1]Yunjing Gao, Jianda Wu. Quantum magnetism from low-dimensional quantum Ising models with quantum integrability [J]. Chin. Phys. Lett., 2025, 42(4): 047501. doi: 10.1088/0256-307X/42/4/047501
    [2]Man Xing, Jun Wang, Xi Zhao, Shushan Zhou. The Role of Multi-Electron and Multi-Orbital Effects in High-Order Harmonic Generation of Benzonitrile Molecules [J]. Chin. Phys. Lett., 2025, 42(4): 043201. doi: 10.1088/0256-307X/42/4/043201
    [3]ZHANG Xue, ZHENG Tai-Yu, TIAN Tian, PAN Shu-Mei. The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble [J]. Chin. Phys. Lett., 2011, 28(6): 064202. doi: 10.1088/0256-307X/28/6/064202
    [4]XU Xue-Fen, ZHU Shi-Qun. From the Thermo Wigner Operator to the Thermo Husimi Operator in Thermo Field Dynamics [J]. Chin. Phys. Lett., 2010, 27(9): 090305. doi: 10.1088/0256-307X/27/9/090305
    [5]ZHAO Yan, SHAO Cheng-Gang, LUO Jun. Finite Temperature Casimir Effect for Corrugated Plates [J]. Chin. Phys. Lett., 2006, 23(11): 2928-2931.
    [6]WANG Jing, ZHANG Xiang-Dong, PEI Shou-Yong, LIU Da-He. Temperature Tuning of Casimir Effect [J]. Chin. Phys. Lett., 2006, 23(9): 2372-2375.
    [7]CHENG Hong-Bo. Casimir effect for a Cavity in the Spacetime with an Extra Dimension [J]. Chin. Phys. Lett., 2005, 22(9): 2190-2193.
    [8]LI Tong-Zhong. New Vacuum State of the Electromagnetic Field-Matter CouplingSystem and the Physical Interpretation of Casimir Effect [J]. Chin. Phys. Lett., 2004, 21(1): 73-75.
    [9]CHEN Wei-zhong, WEI Rong-jue. Dynamic Casimir Effect in Single Bubble Sonoluminescence [J]. Chin. Phys. Lett., 1999, 16(10): 767-769.
    [10]SHAO Cheng-gang, LIU Zhong-zhu, LUO Jun. Casimir Effect Between Plates with Oxide Film [J]. Chin. Phys. Lett., 1999, 16(6): 400-402.

Catalog

    Article views (5) PDF downloads (761) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return